Cafagna, Donato; Grassi, Giuseppe Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. (English) Zbl 1158.34300 Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, No. 7, 1845-1863 (2008). Summary: This tutorial investigates bifurcation and chaos in the fractional-order Chen system from the time-domain point of view. The objective is achieved using the Adomian decomposition method, which allows the solution of the fractional differential equations to be written in closed form. By taking advantage of the capabilities given by the decomposition method, the paper illustrates two remarkable findings: (i) chaos exists in the fractional Chen system with order as low as 0.24, which represents the smallest value ever reported in literature for any chaotic system studied so far; (ii) it is feasible to show the occurrence of pitchfork bifurcations and period-doubling routes to chaos in the fractional Chen system, by virtue of a systematic time-domain analysis of its dynamics. Cited in 27 Documents MSC: 34-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to ordinary differential equations 34C23 Bifurcation theory for ordinary differential equations 34C28 Complex behavior and chaotic systems of ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems 37Gxx Local and nonlocal bifurcation theory for dynamical systems 26A33 Fractional derivatives and integrals Keywords:fractional calculus; Chen system; chaotic dynamics; bifurcation analysis; test for chaos Software:Sprott's Software PDF BibTeX XML Cite \textit{D. Cafagna} and \textit{G. Grassi}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, No. 7, 1845--1863 (2008; Zbl 1158.34300) Full Text: DOI References: [1] DOI: 10.1103/RevModPhys.65.1331 [2] DOI: 10.1016/0895-7177(90)90125-7 · Zbl 0713.65051 [3] DOI: 10.1007/978-94-015-8289-6 [4] DOI: 10.1016/S0895-7177(96)00171-9 · Zbl 0874.65051 [5] DOI: 10.1016/S0960-0779(02)00438-1 · Zbl 1033.37019 [6] DOI: 10.1093/ietfec/e89-a.10.2752 [7] DOI: 10.1142/S0218127407017276 · Zbl 1117.37017 [8] DOI: 10.1142/S0218127408020550 · Zbl 1147.34302 [9] DOI: 10.1111/j.1365-246X.1967.tb02303.x [10] DOI: 10.1016/0167-2789(91)90222-U · Zbl 0736.62075 [11] DOI: 10.1109/9.159595 · Zbl 0825.58027 [12] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 [13] Chua L. O., IEEE Trans. Circuits Syst.-I 33 pp 1073– [14] DOI: 10.1002/cta.4490220404 [15] DOI: 10.1016/j.jmaa.2004.07.039 · Zbl 1061.34003 [16] DOI: 10.1006/jmaa.2000.7194 [17] DOI: 10.1023/A:1016592219341 · Zbl 1009.65049 [18] DOI: 10.1023/B:NUMA.0000027736.85078.be · Zbl 1055.65098 [19] DOI: 10.1103/PhysRevA.34.4971 [20] DOI: 10.1007/978-3-7091-2664-6_5 [21] DOI: 10.1098/rspa.2003.1183 · Zbl 1042.37060 [22] DOI: 10.1016/j.physd.2005.09.011 · Zbl 1097.37024 [23] DOI: 10.1109/81.404062 [24] Kantz H., Nonlinear Time Series Analysis (2004) · Zbl 1050.62093 [25] DOI: 10.1016/j.chaos.2004.02.035 · Zbl 1069.37025 [26] DOI: 10.1016/j.chaos.2004.02.013 · Zbl 1060.37026 [27] DOI: 10.1016/j.physa.2005.06.078 [28] DOI: 10.1016/j.physleta.2006.01.068 [29] DOI: 10.1016/j.chaos.2005.04.037 · Zbl 1101.37307 [30] DOI: 10.1142/9789812798855_0004 [31] DOI: 10.1016/j.amc.2004.03.014 · Zbl 1063.65055 [32] Oldham K. B., The Fractional Calculus (1974) · Zbl 0292.26011 [33] DOI: 10.1007/978-1-4612-3486-9 [34] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008 [35] DOI: 10.1016/S0096-3003(01)00167-9 · Zbl 1029.34003 [36] DOI: 10.1109/TAC.1984.1103551 · Zbl 0532.93025 [37] Takens F., Lecture Notes in Mathematics 98 pp 366– (1981) [38] Ueta T., Int. J. Bifurcation and Chaos 10 pp 1917– [39] Zhang H. B., Int. J. Mod. Phys. C 16 pp 1– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.