×

zbMATH — the first resource for mathematics

A contact linearization problem for Monge-Ampère equations and Laplace invariants. (English) Zbl 1158.35023
Summary: We solve a problem of contact linearization for non-degenerate regular Monge-Ampère equations. In order to solve the problem we construct tensor invariants of equations with respect to contact transformations and generalize the classical Laplace invariants.

MSC:
35J15 Second-order elliptic equations
35J60 Nonlinear elliptic equations
35L10 Second-order hyperbolic equations
35L70 Second-order nonlinear hyperbolic equations
58J05 Elliptic equations on manifolds, general theory
53D10 Contact manifolds, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, I.M., Juras, M.: Generalized Laplace invariants and the method of Darboux. Duke Math. J. 89, 351–375 (1997) · Zbl 0885.35075 · doi:10.1215/S0012-7094-97-08916-X
[2] Forsyth, A.R.: Theory of Differential Equations. Part 4. Partial Differential Equations, vol. 6. Cambridge University Press, Cambridge (1906). 596 pp. · JFM 37.0366.01
[3] Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51(6), 1498–1521 (1991) · Zbl 0761.35063 · doi:10.1137/0151075
[4] Kruglikov, B.S.: On some classification problems in four-dimensional geometry: distributions, almost complex structures, and the generalized Monge-Ampère equations. Mat. Sb. 189(11), 61–74 (1998) · Zbl 0946.53014
[5] Kruglikov, B.S.: Symplectic and contact Lie algebras with application to the Monge-Ampère equations. Tr. Mat. Inst. Steklova 221, 232–246 (1998) · Zbl 1032.53067
[6] Kruglikov, B.S.: Classification of Monge-Ampère equations with two variables. In: Geometry and Topology of Caustics, CAUSTICS’98, Warsaw, pp. 179–194. Polish Acad. Sci., Warsaw (1999) · Zbl 0953.35011
[7] Kushner, A.G.: Chaplygin and Keldysh normal forms of Monge-Ampère equations of variable type. Math. Zametki 52(5), 63–67 (1992) · Zbl 0799.35164
[8] Kushner, A.G.: Classification of mixed type Monge-Ampère equations. In: Geometry in Partial Differential Equations, pp. 173–188. World Scientific, Singapore (1993) · Zbl 0887.35105
[9] Kushner, A.G.: Symplectic geometry of mixed type equations. Am. Math. Soc. Transl. 2, 131–142 (1995) · Zbl 0843.58125
[10] Kushner, A.G.: Monge–Ampère equations and e-structures. Dokl. Math. 58(1), 103–104 (1998) · Zbl 0958.58002
[11] Kushner, A.G.: Almost product structures and Monge-Ampère equations. Lobachevskii J. Math. 23, 151–181 (2006). http://ljm.ksu.ru · Zbl 1116.35003
[12] Kushner, A.G., Lychagin, V.V., Rubtsov, V.N.: Contact Geometry and Nonlinear Differential Equations. Cambridge University Press, Cambridge (2007). 496 pp. · Zbl 1122.53044
[13] Lie, S.: Ueber einige partielle Differential-Gleichungen zweiter Orduung. Math. Ann. 5, 209–256 (1872) · JFM 04.0408.01 · doi:10.1007/BF01444840
[14] Lie, S.: Begrundung einer Invarianten-Theorie der Beruhrungs-Transformationen. Math. Ann. 8, 215–303 (1874) · JFM 06.0092.01 · doi:10.1007/BF01443411
[15] Lychagin, V.V.: Contact geometry and second-order nonlinear differential equations. Russ. Math. 34, 137–165 (1979) · Zbl 0427.58002
[16] Lychagin, V.V.: Lectures on Geometry of Differential Equations. 1, 2. La Sapienza, Rome (1993) · Zbl 0818.58051
[17] Lychagin, V.V., Rubtsov, V.N.: On Sophus Lie theorems for Monge-Ampère equations. Dokl. Akad. Nauk BSSR 27(5), 396–398 (1983) · Zbl 0526.58002
[18] Morimoto, T.: La géométrie des équations de Monge-Ampére. C.R. Acad. Sci. Paris A-B 289(1), A25–A28 (1979) · Zbl 0425.35023
[19] Morozov, O.I.: Contact equivalence of the generalized Hunter-Saxton equation and the Euler-Poisson equation, pp. 1–3. Preprint (2004). arXiv: math-ph/0406016
[20] Tunitskii, D.V.: On the contact linearization of Monge-Ampère equations. Izv. Ross. Akad. Nauk Ser. Mat. 60(2), 195–220 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.