On the incompressible limit for the Navier-Stokes-Fourier system in domains with wavy bottoms. (English) Zbl 1158.35072

The motion of a compressible viscous and heat conducting fluid occupying a domain \(\Omega\subset \mathbb{R}^3\) is described by a triple of functions – the density \(\rho(x,t)\), the velocity \(u(x,t)\), the temperature \(\vartheta(x,t)\). These functions satisfy the Navier-Stokes-Fourier system of equations \[ \begin{aligned} \frac{\partial \rho}{\partial t}&+\text{div}\,(\rho u)=0,\\ \frac{\partial }{\partial t}(\rho u)+\text{div}\,(\rho u\otimes u)&+ \frac{1}{\text{Ma}^2}\nabla p(\rho,\vartheta)=\text{div}\,S+\frac{1}{\text{Fr}^2}\rho\nabla F,\\ \frac{\partial }{\partial t}(\rho s(\rho,\vartheta))&+\text{div}\,(\rho s(\rho,\vartheta)u)+\text{div}\,\left(\frac{q}{\vartheta}\right)=\sigma,\\ \frac{d}{dt}\int_\Omega&\left(\frac{\text{Ma}^2}{2}\rho | u| ^2 +\rho e(\rho,\vartheta)-\frac{\text{Ma}^2}{\text{Fr}^2}\rho F \right)dx=0, \end{aligned}\tag{1} \] where \(S\) is a viscous stress tensor, the heat flux \(q\) obeys Fourier’s law \[ q=-k(\vartheta)\nabla\vartheta, \] \(\sigma\) is the entropy production, \(p\) is the pressure, \(s\) is the specific entropy, \(e\) is the specific internal energy, Ma and Fr denote the Mach and Froude numbers.
Let \(\bar{\vartheta}\) and \(\bar{\rho}\) are average quantities \[ \bar{\vartheta}=\frac{1}{| \Omega| }\int_\Omega\vartheta\,dx,\quad \bar{\rho}=\frac{1}{| \Omega| }\int_\Omega\rho\,dx. \] Setting Ma=\(\varepsilon\), Fr=\(\sqrt{\varepsilon}\), where \(\varepsilon\) is a small parameter, the triple of unknown functions is represented by \[ \rho=\rho_\varepsilon=\bar{\rho}+\varepsilon r_\varepsilon,\quad u=u_\varepsilon,\quad \vartheta=\vartheta_\varepsilon=\bar{\vartheta}+\varepsilon \theta_\varepsilon. \] It is proved that the limits \[ r_\varepsilon\rightarrow r,\quad u_\varepsilon\rightarrow u,\quad \theta_\varepsilon\rightarrow \theta \quad \text{as}\;\varepsilon\rightarrow 0 \] satisfy to the Oberbeck-Boussinesq system \[ \begin{aligned} \text{div}\,u=0&,\\ \bar{\rho}\big(\frac{\partial u}{\partial t}+\text{div}\,(u\otimes u)\big)+\nabla P&=\bar{\mu}\Delta u-r\nabla F,\\ \bar{\rho}\bar{c}_p\big(\frac{\partial \theta}{\partial t}+\text{div}\,(\theta u)\big)-& \text{div}\,(\bar{k}\nabla \theta)=0,\\ r+\bar{\rho}\bar{\alpha}(\theta-\bar{\theta})&=0, \end{aligned} \] where the viscosity coefficient \(\bar{\mu}\), the specific heat at constant pressure \(\bar{c}_p\), the heat conductivity coefficient \(\bar{k}\) and the coefficient of thermal expansion \(\bar{\alpha}\) are evaluated at \(\bar{\rho},\bar{\vartheta}\).
It is shown that the oscillations of the sound waves are effectively damped by the presence of a “wavy bottom” of physical domain.


35Q30 Navier-Stokes equations
35B35 Stability in context of PDEs
76N15 Gas dynamics (general theory)
Full Text: DOI


[1] DOI: 10.1115/1.1831297 · Zbl 1111.74325
[2] DOI: 10.1111/1467-9590.01440 · Zbl 1114.76347
[3] DOI: 10.1090/S0002-9947-99-02533-7 · Zbl 0940.35145
[4] DOI: 10.1051/m2an:2005019 · Zbl 1080.35067
[5] DOI: 10.1016/S0021-7824(99)00032-X
[6] DOI: 10.1007/BF01393835 · Zbl 0696.34049
[7] DOI: 10.1093/acprof:oso/9780198528388.001.0001
[8] DOI: 10.1016/j.camwa.2006.02.042 · Zbl 1122.76075
[9] Feireisl E., J. Math. Fluid Mech.
[10] Feireisl E., Proc. Roy. Soc. Edinburgh 135 pp 1169– · Zbl 1130.35108
[11] DOI: 10.1007/s00205-007-0066-4 · Zbl 1147.76049
[12] Foote R. L., Proc. Amer. Math. Soc. 92 pp 153–
[13] DOI: 10.1007/978-1-4612-5364-8
[14] DOI: 10.1080/03605309308820938 · Zbl 0818.35136
[15] DOI: 10.1002/cpa.3160340405 · Zbl 0476.76068
[16] DOI: 10.1023/A:1004844002437 · Zbl 1015.76071
[17] DOI: 10.1016/S0021-7824(98)80139-6 · Zbl 0909.35101
[18] DOI: 10.1007/978-1-4612-2210-1
[19] DOI: 10.1007/978-3-642-70728-5
[20] DOI: 10.1006/jdeq.1994.1157 · Zbl 0838.35071
[21] DOI: 10.1051/m2an:2005017 · Zbl 1094.35094
[22] Vishik M. I., Usp. Mat. Nauk 12 pp 3–
[23] DOI: 10.1512/iumj.1981.30.30028 · Zbl 0439.35046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.