×

zbMATH — the first resource for mathematics

The Turán-type inequalities for complex polynomials in \(L_{0}\)-metrics. (English. Russian original) Zbl 1158.41303
Russ. Math. 52, No. 5, 88-94 (2008); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2008, No. 5, 101-108 (2008).
Summary: We obtain inequalities for measures of trigonometric polynomials of power \((P_n (e^{i\varphi} ))\) and general \((T_n (t))\) types with the help of measures and their \(m\)th derivatives.
MSC:
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
30C10 Polynomials and rational functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Turan, ”Über die Ableitung von Polynomen,” Composito Math. Soc. 7, 89–95 (1939). · JFM 65.0324.01
[2] N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines (Naukova Dumka, Kiev, 1992) [in Russian]. · Zbl 0976.41008
[3] G. Pólya and G. Szegö, Problems and Theorem in Analysis, Vol. II (Springer-Verlag, Berlin, New York, 1925; Nauka, Moscow, 1978).
[4] V. V. Arestov, ”Integral Inequalities for Algebraic Polynomials on the Unit Circumference,” Matem. Zametki 48(4), 7–18 (1990). · Zbl 0713.30006
[5] E. A. Storozhenko, ”A Problem of Mahler on the Zeros of a Polynomial and its Derivative,” Matem. Sborn. 187(5), 111–120 (1996). · Zbl 0871.30036 · doi:10.1070/SM1996v187n01ABEH000103
[6] G. Pólya and G. Szegö, Problems and Theorem in Analysis, Vol. I (Springer-Verlag, Berlin, New York, 1925; Nauka, Moscow, 1978).
[7] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities (Springer-Verlag, New York, 1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.