×

Existence results for systems of vector variational-like inequalities. (English) Zbl 1158.49015

Summary: The purpose of this paper is to introduce and study systems of vector variational-like inequalities in Banach spaces. Under certain conditions, some existence results for systems of vector variational-like inequalities in Banach spaces are obtained by Kakutani-Fan-Glicksberg fixed point theorem.

MSC:

49J40 Variational inequalities
47H10 Fixed-point theorems
47J20 Variational and other types of inequalities involving nonlinear operators (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chen, G.Y., Existence of solutions for a vector variational inequality: an extension of hartman – stampacchia theorem, J. optim. theory appl., 74, 445-456, (1992) · Zbl 0795.49010
[2] Chen, Y.Q., On the semi-monotone operation theory and application, J. math. anal. appl., 231, 177-192, (1999)
[3] Chen, G.Y.; Craven, B.D., Approximate dual and approximate vector variational inequality for multiobjective optimization, J. aust. math. soc. ser. A, 47, 418-423, (1989) · Zbl 0693.90089
[4] Deniilidis, A.; Hadjisavvas, N., On the subdifferential of quasiconvex and pseudoconvex functions and cyclic monotonicity, J. math. anal. appl., 237, 30-42, (1999)
[5] Fan, K., Some properties of convex sets related to fixed point theorems, Math. ann., 266, 519-547, (1984) · Zbl 0515.47029
[6] Fang, Y.P.; Huang, N.J., Variational-like inequalities with generalized monotone mappings in Banach spaces, J. optim. theory appl., 118, 327-338, (2003) · Zbl 1041.49006
[7] Fang, Y.P.; Huang, N.J., Existence results for systems of strong implicit vector variational inequalities, Acta math. hungar., 103, 4, 265-277, (2004) · Zbl 1060.49003
[8] Giannessi, F., Theorems of alternative, quadratic programmes and complementarity problems, (), 151-186
[9] Giannessi, F., On minty variational principle, (), 93-99 · Zbl 0909.90253
[10] F. Giannessi (Ed.), Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, 2000. · Zbl 0952.00009
[11] Glicksberg, I., A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points, Proc. am. math. soc., 3, 170-174, (1952) · Zbl 0046.12103
[12] N. Hadjisavvas, S. Schaible, Quasimonotonicity and Pseudomonotonicity in Variational Inequalities and Equilibrium Problems, Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), Nonconvex Optim. Apps. 27 (1998) 257-275, Kluwer Acad. Olbl., Dordrecht. · Zbl 0946.49005
[13] Hu, J.Y., Simultaneous vector variational inequalities and vector implicit complementarity problem, J. optim. theory appl., 93, 141-151, (1997) · Zbl 0901.90169
[14] Hu, Sh.; Papageorgiou, N.S., Handbook of multivalued analysis, volume I: theory, mathematics and its applications, vol. 419, (1997), Kluwer Academic Publishers Dordrecht
[15] Huang, N.J.; Fang, Y.P., Fixed point theorems and a new system of multivalued generalized order complementarity problems, Positivity, 7, 257-265, (2003) · Zbl 1042.90047
[16] R. John, A note on Minty variational inequalities and generalized monotonicity, in: Generalized Convexity and Generalized Monotonicity (Karlovassi, 1999), Lecture Notes in Economics and Mathematical Systems, vol. 502, Springer, Berlin, 2001, pp. 240-246. · Zbl 0977.49003
[17] Karamardian, S.; Schaible, S., Seven kinds of monotone maps, J. optim. theory appl., 66, 37-46, (1990) · Zbl 0679.90055
[18] Kassay, G.; Kolumbán, J., System of multi-valued variational inequalities, Publ. math. debrecen, 56, 185-195, (2000) · Zbl 0989.49010
[19] Kassay, G.; Kolumbán, J.; Páles, Z., Factorization of minty and Stampacchia variational inequality system, Eur. J. oper. res., 143, 377-389, (2002) · Zbl 1059.49015
[20] Konnov, I.V., On quasimonotone variational inequalities, J. optim. theory appl., 99, 165-181, (1998) · Zbl 0911.90325
[21] Konnov, I.V.; Yao, J.C., On the generalized variational inequality problem, J. math. anal. appl., 206, 42-58, (1997) · Zbl 0878.49006
[22] Lee, G.M.; Lee, B.S.; Kim, D.S.; Chen, G.Y., On vector variational inequalities for multifunctions, Indian J. pure appl. math., 28, 633-939, (1997)
[23] Siddiqi, A.H.; Ansari, Q.H.; Ahmad, R., On vector variational-like inequalities, Indian J. pure appl. math., 26, 1135-1141, (1995) · Zbl 0856.49006
[24] Yang, X.Q., Vector variational inequalities and vector pseudolinear optimization, J. optim. theory appl., 95, 729-734, (1997) · Zbl 0901.90162
[25] Yang, X.Q.; Chen, G.Y., A class of nonconvex functions and variational inequalities, J. math. anal. appl., 169, 359-373, (1992) · Zbl 0779.90067
[26] Yang, X.Q.; Goh, C.J., On vector variational inequality application to vector traffic equilibria, J. optim. theory appl., 95, 431-443, (1997) · Zbl 0892.90158
[27] Yu, S.J.; Yao, J.C., On vector variational inequalities, J. optim. theory appl., 89, 749-769, (1996) · Zbl 0848.49012
[28] Yuan, G.X.Z., KKM theory and applications in nonlinear analysis, (1999), Marcel Dekker New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.