Henk, Martin; Hernández Cifre, María A. Notes on the roots of Steiner polynomials. (English) Zbl 1158.52003 Rev. Mat. Iberoam. 24, No. 2, 631-644 (2008). The authors study the location and the size of the roots of Steiner polynomials of convex bodies in the Minkowski relative geometry. Reviewer: Anatoliy Milka (Kharkov) Cited in 1 ReviewCited in 6 Documents MSC: 52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces) 52A39 Mixed volumes and related topics in convex geometry 30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral) Keywords:Steiner polynomial; Teissier’s problem; tangential bodies; circumradius; inradius PDF BibTeX XML Cite \textit{M. Henk} and \textit{M. A. Hernández Cifre}, Rev. Mat. Iberoam. 24, No. 2, 631--644 (2008; Zbl 1158.52003) Full Text: DOI arXiv Euclid EuDML References: [1] Betke, U. and Henk, M.: Intrinsic volumes and lattice points of crosspolytopes. Monatsh. Math. 115 (1993), no. 1-2, 27-33. · Zbl 0779.52013 [2] Blaschke, W.: Vorlesungen über Integralgeometrie . Deutscher Verlag der Wissenschaften, Berlin, 1995, 3rd ed. · JFM 61.0761.02 [3] Bonnesen, T.: Les problèmes des isopérimètres et des isépiphanes . Collection de monographies sur la théorie des fonctions. Gauthier-Villars, Paris, 1929. · JFM 55.0431.08 [4] Bonnesen, T. and Fenchel, W.: Theorie der konvexen Körper . Springer-Verlag, Berlin-New York, 1974. English translation: Theory of convex bodies . Edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, ID, 1987. · Zbl 0277.52001 [5] Favard, J.: Sur les corps convexes. J. Math. Pures Appl. (9) 12 (1933), 219-282. · Zbl 0007.31805 [6] Flanders, H.: A proof of Minkowski’s inequality for convex curves. Amer. Math. Monthly 75 (1968), 581-593. JSTOR: · Zbl 0162.25803 [7] Hernández Cifre, M. A. and Saorí n, E.: On the roots of the Steiner polynomial of a 3-dimensional convex body. Adv. Geom. 7 (2007), 275-294. · Zbl 1130.52002 [8] Katsnelson, V.: On H. Weyl and H. Minkowski polynomials. Preprint, 2007. http://arxiv.org/abs/math/0702139. [9] Marden, M.: Geometry of polynomials . Second edition. Mathematical Surveys 3 . American Mathematical Society, Providence, R.I., 1966. · Zbl 0162.37101 [10] Oda, T.: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties . Results in Mathematics and Related Areas (3) 15 . Springer-Verlag, Berlin, 1988. · Zbl 0628.52002 [11] Sangwine-Yager, J. R.: Bonnesen-style inequalities for Minkowski relative geometry. Trans. Amer. Math. Soc. 307 (1988), no. 1, 373-382. JSTOR: · Zbl 0652.52010 [12] Sangwine-Yager, J. R.: Mixed volumes. In: Handbook of convex geometry, Vol. A, B (P. M. Gruber and J. M. Wills eds.), 43-71. North-Holland, Amsterdam, 1993. · Zbl 0789.52003 [13] Schneider, R.: Convex Bodies: The Brunn-Minkowski theory . Encyclopedia of Mathematics and its Applications 44 . Cambridge University Press, Cambridge, 1993. · Zbl 0798.52001 [14] Steiner, J.: Über parallele Flächen. Monatsber. Preuss. Akad. Wiss. (1840), 114-118. Also in: Ges. Werke, Vol II , 245-308. Reimer, Berlin, 1882. [15] Teissier, B.: Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem. In Seminar on Differential Geometry , 85-105. Annals of Mathematical Studies 102 . Princeton University Press, Princeton, N. J., 1982. · Zbl 0494.52009 [16] Wills, J. M.: Minkowski’s successive minima and the zeros of a convexity-function. Monatsh. Math. 109 (1990), 157-164. · Zbl 0712.52016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.