Dolejší, Vít; Feistauer, Miloslav; Kučera, Václav; Sobotíková, Veronika An optimal \(L^\infty(L^{2})\)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. (English) Zbl 1158.65067 IMA J. Numer. Anal. 28, No. 3, 496-521 (2008). The paper is devoted to the derivation of an \(L^{\infty}(L_2)\) optimal error estimate for a semi-discretization of a nonlinear, non-stationary convection-diffusion problem, where a discontinuous Galerkin approximation for the spatial operator is used. The main results are illustrated by numerical experiments. Reviewer: Iwan Gawriljuk (Eisenach) Cited in 14 Documents MSC: 65M20 Method of lines for initial value and initial-boundary value problems involving PDEs 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 35K55 Nonlinear parabolic equations 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs Keywords:non-stationary convection-diffusion problem; discontinuous Galerkin approximation; optimal \(L^{\infty}(L_2)\)-error estimate; finite-element method; interior and boundary penalty; method of lines; convergence; semi-discretization; numerical experiments PDF BibTeX XML Cite \textit{V. Dolejší} et al., IMA J. Numer. Anal. 28, No. 3, 496--521 (2008; Zbl 1158.65067) Full Text: DOI OpenURL