Ageev, A. L.; Antonova, T. V. Localization algorithms for singularities of solutions to convolution equations of the first kind. (English) Zbl 1158.65087 J. Inverse Ill-Posed Probl. 16, No. 7, 639-650 (2008). The authors construct and investigate localization algorithms for isolated singularities of a solution of a linear convolution equation of the first kind whose right-hand side to be given using an averaging method defined by an averaging functional to obtain the singularities and using the Fourier transform. Reviewer: Hu Chuangan (Tianjin) Cited in 1 ReviewCited in 3 Documents MSC: 65R20 Numerical methods for integral equations 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) Keywords:isolated singularity; averaging functional; separation threshold; discontinuity point; Fourier transform; Cauchy-Bunyakovskii inequality; localization algorithms; linear convolution equation of the first kind PDF BibTeX XML Cite \textit{A. L. Ageev} and \textit{T. V. Antonova}, J. Inverse Ill-Posed Probl. 16, No. 7, 639--650 (2008; Zbl 1158.65087) Full Text: DOI References: [1] Yu V., Uspehi Fiz. Nauk 165 pp 2– (1995) [2] Kozlov V. P., Optics and Spectroscopy 16 pp 3– (1964) [3] Kozlov V. P., Optics and Spectroscopy 17 pp 2– (1964) [4] Ageev A. L., Computing Methods and Programming 8 pp 275– (2007) [5] Kostousov V. B., Proc. of Mathematics and Mechanics Institute. Ekaterinburg pp 11– (2005) [6] Ageev A. L., Izv. Vuzov. Matematika 11 pp 1– (2007) [7] Antonova T. V., Izv. Vuzov. Matematika 7 pp 65– (2001) [8] Antonova T. V., J. Inv. Ill-Posed Problems 10 pp 2– (2002) [9] Antonova T. V., Fiziki 40 pp 6– (2000) [10] Antonova T. V., VINITI 17.10 00 pp 2639– (2000) [11] Antonova T. V., Proc. of the Steklov Institute of Mathematics 1 pp 145– (2002) [12] Ageev A. L., Computation Mathematics and Mathematical Physics 48 pp 8– (2008) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.