×

Peristaltic flow of a magneto-micropolar fluid: effect of induced magnetic field. (English) Zbl 1158.76055

Summary: We examine the effect of the induced magnetic field on peristaltic transport of an incompressible conducting micropolar fluid in a symmetric channel. The flow analysis has been developed for low Reynolds number and long wavelength approximation. Exact solutions have been established for the axial velocity, microrotation component, stream function, magnetic-force function, axial-induced magnetic field, and current distribution across the channel. Expressions for the shear stresses are also obtained. The effects of pertinent parameters on the pressure rise per wavelength are investigated by means of numerical integrations, also we study the effects of these parameters on the axial pressure gradient, axial-induced magnetic field, as well as current distribution across the channel and the nonsymmetric shear stresses. The phenomena of trapping and magnetic-force lines are further discussed.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] K. K. Raju and R. Devanathan, “Peristaltic motion of a non-Newtonian fluid,” Rheologica Acta, vol. 11, no. 2, pp. 170-178, 1972. · Zbl 0246.76002
[2] G. Böhme and R. Friedrich, “Peristaltic flow of viscoelastic liquids,” Journal of Fluid Mechanics, vol. 128, pp. 109-122, 1983. · Zbl 0515.76131
[3] L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of blood: Casson model-II,” Journal of Biomechanics, vol. 17, no. 11, pp. 821-829, 1984.
[4] Kh. S. Mekheimer, “Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels,” Biorheology, vol. 39, no. 6, pp. 755-765, 2002.
[5] N. Ali, T. Hayat, and M. Sajid, “Peristaltic flow of a couple stress fluid in an asymmetric channel,” Biorheology, vol. 44, no. 2, pp. 125-138, 2007.
[6] Kh. S. Mekheimer and Y. Abd Elmaboud, “Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope,” Physica A, vol. 387, no. 11, pp. 2403-2415, 2008. · Zbl 1310.76197
[7] A. C. Eringen, Microcontinuum Field Theories. II. Fluent Media, Springer, New York, NY, USA, 2001. · Zbl 0972.76001
[8] D. Philip and P. Chandra, “Peristaltic transport of simple microfluid,” Proceedings of the National Academy of Sciences, India. Section A, vol. 65, no. 1, pp. 63-74, 1995. · Zbl 1106.76489
[9] P. Muthu, B. V. Rathish Kumar, and P. Chandra, “On the influence of wall properties in the peristaltic motion of micropolar fluid,” The ANZIAM Journal, vol. 45, no. 2, pp. 245-260, 2003. · Zbl 1201.76266
[10] T. Hayat, N. Ali, and Z. Abbas, “Peristaltic flow of a micropolar fluid in a channel with different wave forms,” Physics Letters A, vol. 370, no. 3-4, pp. 331-344, 2007.
[11] A. C. Eringen, “Theory of micropolar fluids,” Journal of Mathematics and Mechanics, vol. 16, pp. 1-18, 1966. · Zbl 0145.21302
[12] R. Girija Devi and R. Devanathan, “Peristaltic transport of micropolar fluid,” Proceedings of the National Academy of Sciences, India. Section A, vol. 81, pp. 149-163, 1975. · Zbl 0319.76083
[13] K. P. Selverov and H. A. Stone, “Peristaltically driven channel flows with applications toward micromixing,” Physics of Fluids, vol. 13, no. 7, pp. 1837-1859, 2001. · Zbl 1184.76491
[14] Abd El Hakeem Abd El Naby and A. E. M. El Misiery, “Effects of an endoscope and generalized Newtonian fluid on peristaltic motion,” Applied Mathematics and Computation, vol. 128, no. 1, pp. 19-35, 2002. · Zbl 1126.76403
[15] T. Hayat, Y. Wang, A. M. Siddiqui, K. Hutter, and S. Asghar, “Peristaltic transport of a third-order fluid in a circular cylindrical tube,” Mathematical Models & Methods in Applied Sciences, vol. 12, no. 12, pp. 1691-1706, 2002. · Zbl 1041.76002
[16] T. Hayat, Y. Wang, A. M. Siddiqui, and K. Hutter, “Peristaltic motion of a Johnson-Segalman fluid in a planar channel,” Mathematical Problems in Engineering, no. 1, pp. 1-23, 2003. · Zbl 1074.76003
[17] Abd El Hakeem Abd El Naby, A. E. M. El Misery, and M. F. Abd El Kareem, “Separation in the flow through peristaltic motion of a carreau fluid in uniform tube,” Physica A, vol. 343, no. 1-4, pp. 1-14, 2004. · Zbl 1098.76080
[18] T. Hayat and N. Ali, “On mechanism of peristaltic flows for power-law fluids,” Physica A, vol. 371, no. 2, pp. 188-194, 2006.
[19] T. Hayat, N. Ali, and S. Asghar, “Peristaltic motion of a Burger/s fluid in a planar channel,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 309-329, 2007. · Zbl 1110.76007
[20] T. Hayat, N. Ali, and S. Asghar, “An analysis of peristaltic transport for flow of a Jeffrey fluid,” Acta Mechanica, vol. 193, no. 1-2, pp. 101-112, 2007. · Zbl 1120.76002
[21] N. Ali and T. Hayat, “Peristaltic motion of a Carreau fluid in an asymmetric channel,” Applied Mathematics and Computation, vol. 193, no. 2, pp. 535-552, 2007. · Zbl 1193.74030
[22] M. H. Haroun, “Effect of Deborah number and phase difference on peristaltic transport of a third-order fluid in an asymmetric channel,” Communications in Nonlinear Science and Numerical Simulation, vol. 12, no. 8, pp. 1464-1480, 2007. · Zbl 1127.76069
[23] M. H. Haroun, “Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel,” Computational Materials Science, vol. 39, no. 2, pp. 324-333, 2007.
[24] V. C. A. Ferraro, An Introduction to Magneto-Fluid Mechanics, Clarendon Press, Oxford, UK, 1966. · Zbl 0105.39804
[25] V. K. Stud, G. S. Sephon, and R. K. Mishra, “Pumping action on blood flow by a magnetic field,” Bulletin of Mathematical Biology, vol. 39, no. 3, pp. 385-390, 1977.
[26] L. M. Srivastava and R. P. Agrawal, “Oscillating flow of a conducting fluid with a suspension of spherical particles,” Journal of Applied Mechanics, vol. 47, pp. 196-199, 1980.
[27] H. L. Agrawal and B. Anwaruddin, “Peristaltic flow of blood in a branch,” Ranchi University Mathematical Journal, vol. 15, pp. 111-121, 1984. · Zbl 0579.76128
[28] Kh. S. Mekheimer, “Non-linear peristaltic transport of magnetohydrodynamic flow in an inclined planar channel,” Arabian Journal for Science and Engineering, vol. 28, no. 2A, pp. 183-201, 2003. · Zbl 1057.76059
[29] Kh. S. Mekheimer and T. H. Al-Arabi, “Nonlinear peristaltic transport of MHD flow through a porous medium,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 26, pp. 1663-1682, 2003. · Zbl 1213.76204
[30] Kh. S. Mekheimer, “Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels,” Applied Mathematics and Computation, vol. 153, no. 3, pp. 763-777, 2004. · Zbl 1041.92006
[31] M. Elshahed and M. H. Haroun, “Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field,” Mathematical Problems in Engineering, vol. 2005, no. 6, pp. 663-677, 2005. · Zbl 1200.76024
[32] T. Hayat, F. M. Mahomed, and S. Asghar, “Peristaltic flow of a magnetohydrodynamic Johnson-Segalman fluid,” Nonlinear Dynamics, vol. 40, no. 4, pp. 375-385, 2005. · Zbl 1094.76004
[33] Abd El Hakeem Abd El Naby, A. E. M. El Misery, and M. F. Abd El Kareem, “Effects of a magnetic field on trapping through peristaltic motion for generalized Newtonian fluid in channel,” Physica A, vol. 367, pp. 79-92, 2006.
[34] T. Hayat and N. Ali, “Peristaltically induced motion of a MHD third grade fluid in a deformable tube,” Physica A, vol. 370, no. 2, pp. 225-239, 2006.
[35] T. Hayat, A. Afsar, M. Khan, and S. Asghar, “Peristaltic transport of a third order fluid under the effect of a magnetic field,” Computers & Mathematics with Applications, vol. 53, no. 7, pp. 1074-1087, 2007. · Zbl 1121.76006
[36] T. Hayat and N. Ali, “A mathematical description of peristaltic hydromagnetic flow in a tube,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1491-1502, 2007. · Zbl 1114.76072
[37] T. Hayat, M. Khan, A. M. Siddiqui, and S. Asghar, “Non-linear peristaltic flow of a non-Newtonian fluid under effect of a magnetic field in a planar channel,” Communications in Nonlinear Science and Numerical Simulation, vol. 12, no. 6, pp. 910-919, 2007. · Zbl 1111.76348
[38] Kh. S. Mekheimer and Y. Abd Elmaboud, “The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope,” Physics Letters A, vol. 372, no. 10, pp. 1657-1665, 2008. · Zbl 1217.76106
[39] T. Hayat, N. Ali, and S. Asghar, “Hall effects on peristaltic flow of a Maxwell fluid in a porous medium,” Physics Letters A, vol. 363, no. 5-6, pp. 397-403, 2007. · Zbl 1197.76126
[40] N. Ali, Q. Hussain, T. Hayat, and S. Asghar, “Slip effects on the peristaltic transport of MHD fluid with variable viscosity,” Physics Letters A, vol. 372, no. 9, pp. 1477-1489, 2008. · Zbl 1217.76100
[41] Y. Wang, T. Hayat, N. Ali, and M. Oberlack, “Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel,” Physica A, vol. 387, no. 2-3, pp. 347-362, 2008.
[42] V. I. Vishnyakov and K. B. Pavlov, “Peristaltic flow of a conductive liquid in a transverse magnetic field,” Magnetohydrodynamics, vol. 8, no. 2, pp. 174-178, 1972.
[43] N. T. M. Eldabe, M. F. El-Sayed, A. Y. Galy, and H. M. Sayed, “Peristaltically induced transport of a MHD biviscosity fluid in a non-uniform tube,” Physica A, vol. 383, no. 2, pp. 253-266, 2007.
[44] Kh. S. Mekheimer, “Effect of the induced magnetic field on peristaltic flow of a couple stress fluid,” Physics Letters A, vol. 372, no. 23, pp. 4271-4278, 2008. · Zbl 1221.76231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.