×

zbMATH — the first resource for mathematics

On certain conditions for the existence of solutions of equilibrium problems. (English) Zbl 1158.90009
Summary: The main purpose of this paper is the study of sufficient and/or necessary conditions for existence of solutions of equilibrium problems. We discuss some of the assumptions of the problem, under which the introduced conditions are sufficient and/or necessary, and also analyze the effect of these assumptions on the connection between the solution sets of the equilibrium problem and of a related convex feasibility problem.

MSC:
90C47 Minimax problems in mathematical programming
49J35 Existence of solutions for minimax problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bianchi M. and Pini R. (2001). A note on equilibrium problems with properly quasimonotone bifunctions. J. Global Optim. 20: 67–76 · Zbl 0985.90090 · doi:10.1023/A:1011234525151
[2] Bianchi M. and Pini R. (2005). Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124: 79–92 · Zbl 1064.49004 · doi:10.1007/s10957-004-6466-9
[3] Bianchi M. and Schaible S. (1996). Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90: 31–43 · Zbl 0903.49006 · doi:10.1007/BF02192244
[4] Blum E. and Oettli W. (1994). From optimization and variational inequalities to equilibrium problems. Math. Stud. 63: 123–145 · Zbl 0888.49007
[5] Brezis H. (1983). Analyse Fonctionelle, théorie et applications. Masson, Paris
[6] Brezis H., Nirenberg L. and Stampacchia G. (1972). A remark on Ky Fan minimax principle. Boll. Unione Mat. Ital. 6: 293–300 · Zbl 0264.49013
[7] Fan K. (1961). A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142: 305–310 · Zbl 0093.36701 · doi:10.1007/BF01353421
[8] Fan, K.: A minimax inequality and applications, in Inequalities III (O. Shisha, ed), Academic, New York 103–113 (1972) · Zbl 0302.49019
[9] Flores-Bazán F. (2000). Existence theorems for generalized noncoercive equilibrium problems: quasiconvex case. SIAM J. Optim. 11: 675–790 · Zbl 1002.49013 · doi:10.1137/S1052623499364134
[10] Flores-Bazán F. (2003). Existence theory for finite dimensional pseudomonotone equilibrium problems. Acta. Appl. Math. 77: 249–297 · Zbl 1053.90110 · doi:10.1023/A:1024971128483
[11] Hadjisavvas N. and Schaible S. (1993). On strong pseudomonotonicity and (semi)strict quasimonotonicity. J. Optim. Theory Appl. 79: 139–155 · Zbl 0792.90068 · doi:10.1007/BF00941891
[12] Iusem A.N. and Sosa W. (2003). New existence results for equilibrium problems. Nonlinear Anal. 52: 621–635 · Zbl 1017.49008 · doi:10.1016/S0362-546X(02)00154-2
[13] Iusem A.N. and Sosa W. (2003). Iterative algorithms for equilibrium problems. Optimization 52: 301–316 · Zbl 1176.90640 · doi:10.1080/0233193031000120039
[14] Karamardian S. and Schaible S. (1990). Seven kinds of monotone maps. J. Optim. Theory Appl. 66: 37–46 · Zbl 0679.90055 · doi:10.1007/BF00940531
[15] Kinderlehrer D. and Stampacchia G. (1980). An introduction to variational inequalities and their applications. Academic, New York · Zbl 0457.35001
[16] Köthe G. (1969). Topological vector spaces. Springer, New York
[17] Lin L.J., Yang M.F., Ansari Q.H. and Kassay G. (2005). Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps. Nonlinear Anal. 61: 1–19 · Zbl 1065.49008 · doi:10.1016/j.na.2004.07.038
[18] Muu L.D. and Oettli W. (1992). Convergence of an adaptive penalty scheme for finding constraint equilibria. Nonlinear Anal. 18: 1159–1166 · Zbl 0773.90092 · doi:10.1016/0362-546X(92)90159-C
[19] Oettli W. (1997). A remark on vector-valued equilibria and generalized monotonicity. Acta. Math. Vietnam. 22: 215–221 · Zbl 0914.90235
[20] Oettli, W., Schläger, D.: Generalized vectorial equilibrium and generalized monotonicity. In: Functional analysis with current applications in science, technology and industry (Aligarh, 1996). Pitman Research Notes in Mathematics Series, vol. 377, pp. 145–154 (1998)
[21] Zhou J.X. and Chen G. (1998). Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. J. Math. Anal. Appl. 132: 213–225 · Zbl 0649.49008 · doi:10.1016/0022-247X(88)90054-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.