zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamics of an adnascent-type game model. (English) Zbl 1158.91324
Summary: The paper presents a nonlinear discrete game model for two oligopolistic firms whose products are adnascent. (In biology, the term adnascent has only one sense, “growing to or on something else,” e.g., “moss is an adnascent plant.” See Webster’s Revised Unabridged Dictionary published in 1913 by C. & G. Merriam Co., edited by Noah Porter.) The bifurcation of its Nash equilibrium is analyzed with Schwarzian derivative and normal form theory. Its complex dynamics is demonstrated by means of the largest Lyapunov exponents, fractal dimensions, bifurcation diagrams, and phase portraits. At last, bifurcation and chaos anticontrol of this system are studied.

MSC:
91A25Dynamic games
91A052-person games
37N40Dynamical systems in optimization and economics
91A40Game-theoretic models
WorldCat.org
Full Text: DOI EuDML
References:
[1] D. Worster, Nature’s Economy: A History of Ecological Ideas, Cambridge University Press, Cambridge, UK, 1985.
[2] A. Marshall, Principles of Economics, Macmillan, London, UK, 4th edition, 1898.
[3] A. J. Lotka, Elements of Mathematical Biology, Dover, New York, NY, USA, 1996.
[4] W. P. Barnett and R. C. Glenn, “Competition and mutualism among early telephone companies,” Administrative Science Quarterly, vol. 32, no. 3, pp. 400-421, 1987. · doi:10.2307/2392912
[5] T. Hens and K. R. Schenk-Hoppé, “Evolutionary stability of portfolio rules in incomplete markets,” Journal of Mathematical Economics, vol. 41, no. 1-2, pp. 43-66, 2005. · Zbl 1118.91050 · doi:10.1016/j.jmateco.2003.01.001
[6] S. H. Levine, “Comparing products and production in ecological and industrial systems,” Journal of Industrial Ecology, vol. 7, no. 2, pp. 33-42, 2008. · doi:10.1162/108819803322564334
[7] T. Puu, “Chaos in duopoly pricing,” Chaos, Solitons & Fractals, vol. 1, no. 6, pp. 573-581, 1991. · Zbl 0754.90015 · doi:10.1016/0960-0779(91)90045-B
[8] F. Tramontana, L. Gardini, and T. Puu, “Cournot duopoly when the competitors operate multiple production plants,” Journal of Economic Dynamics and Control, vol. 33, no. 1, pp. 250-265, 2009. · Zbl 1170.91501 · doi:10.1016/j.jedc.2008.06.001
[9] E. Ahmed and H. N. Agiza, “Dynamics of a Cournot game with n-competitors,” Chaos, Solitons & Fractals, vol. 9, no. 9, pp. 1513-1517, 1998. · Zbl 0952.91004 · doi:10.1016/S0960-0779(97)00131-8
[10] E. Ahmed, H. N. Agiza, and S. Z. Hassan, “On modifications of Puu’s dynamical duopoly,” Chaos, Solitons & Fractals, vol. 11, no. 7, pp. 1025-1028, 2000. · Zbl 0955.91045 · doi:10.1016/S0960-0779(98)00322-1
[11] H. N. Agiza and A. A. Elsadany, “Nonlinear dynamics in the Cournot duopoly game with heterogeneous players,” Physica A, vol. 320, pp. 512-524, 2003. · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[12] G. I. Bischi, C. Mammana, and L. Gardini, “Multistability and cyclic attractors in duopoly games,” Chaos, Solitons & Fractals, vol. 11, no. 4, pp. 543-564, 2000. · Zbl 0960.91017 · doi:10.1016/S0960-0779(98)00130-1
[13] M. Kopel, “Simple and complex adjustment dynamics in Cournot duopoly models,” Chaos, Solitons & Fractals, vol. 7, no. 12, pp. 2031-2048, 1996. · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[14] W. J. Den Haan, “The importance of the number of different agents in a heterogeneous asset-pricing model,” Journal of Economic Dynamics and Control, vol. 25, no. 5, pp. 721-746, 2001. · Zbl 0963.91051 · doi:10.1016/S0165-1889(00)00038-5
[15] J. Friedman, “Oligopoly theory,” in Handbook of Mathematical Economics, K. J. Arrow and M. D. Intriligator, Eds., vol. 2, pp. 491-534, North-Holland, Amsterdam, The Netherlands, 1982. · Zbl 0522.90011
[16] Y. Zhang, X. Luo, and J. Xue, “Adaptive dynamic Cournot model in oligopoly market,” Journal of Industrial Engineering and Engineering Management, vol. 18, no. 3, pp. 78-81, 2004.
[17] H.-X. Yao and F. Xu, “Complex dynamics analysis for a duopoly advertising model with nonlinear cost,” Applied Mathematics and Computation, vol. 180, no. 1, pp. 134-145, 2006. · Zbl 1139.91365 · doi:10.1016/j.amc.2005.11.170
[18] A. K. Naimzada and L. Sbragia, “Oligopoly games with nonlinear demand and cost functions: two boundedly rational adjustment processes,” Chaos, Solitons & Fractals, vol. 29, no. 3, pp. 707-722, 2006. · Zbl 1142.91340 · doi:10.1016/j.chaos.2005.08.103
[19] G. I. Bischi, F. Lamantia, and L. Sbragia, “Competition and cooperation in natural resources exploitation: an evolutionary game approach,” in Game Practice and the Environment, C. Carraro and V. Fragnelli, Eds., pp. 187-211, Edward Elgar, Cheltenham, UK, 2004.
[20] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1990. · Zbl 0712.90018
[21] F. Szidarovszky and K. Okuguchi, “An oligopoly model of commercial fishing,” Seoul Journal of Economics, vol. 11, no. 1, pp. 321-330, 1998.
[22] V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Group, vol. 165 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 2005. · Zbl 1073.53001
[23] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. · Zbl 0515.34001
[24] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 of Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1998. · Zbl 0914.58025 · doi:10.1007/b98848
[25] W. Huang, “The long-run benefits of chaos to oligopolistic firms,” Journal of Economic Dynamics and Control, vol. 32, no. 4, pp. 1332-1355, 2008. · Zbl 1181.91227 · doi:10.1016/j.jedc.2007.05.010
[26] L. Qian and Q. Lu, “Bifurcation of the competitive system with impulsive control,” Dynamics of Continuous Discrete and Impulsive Systems. Series B, vol. 14, supplement 5, pp. 24-28, 2007.
[27] G. Qi, Z. Chen, and Z. Yuan, “Adaptive high order differential feedback control for affine nonlinear system,” Chaos, Solitons & Fractals, vol. 37, no. 1, pp. 308-315, 2008. · Zbl 1147.93029 · doi:10.1016/j.chaos.2006.09.027
[28] Z. Chen and P. Yu, “Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions,” Chaos, Solitons & Fractals, vol. 26, no. 4, pp. 1231-1248, 2005. · Zbl 1093.37508 · doi:10.1016/j.chaos.2005.03.009
[29] X.-Y. Wang and M.-J. Wang, “Chaotic control of the coupled Logistic map,” Acta Physica Sinica, vol. 57, no. 2, pp. 731-736, 2008. · Zbl 1174.93479
[30] X. F. Wang and G. Chen, “Chaotification via arbitrarily small feedback controls: theory, method, and applications,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 10, no. 3, pp. 549-570, 2000. · Zbl 1090.37532 · doi:10.1142/S0218127400000372
[31] Q. Lu, Bifurcation and Singularity, Shanghai Scientific and Technological Education, Shanghai, China, 1995.
[32] J. L. Kaplan and J. A. Yorke, “Preturbulence: a regime observed in a fluid flow model of Lorenz,” Communications in Mathematical Physics, vol. 67, no. 2, pp. 93-108, 1979. · Zbl 0443.76059 · doi:10.1007/BF01221359