zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Breakdown of a chemostat exposed to stochastic noise. (English) Zbl 1158.92328
Summary: The stochastic dynamics of a chemostat with three trophic levels, substrate -- bacterium -- worm, is analyzed. It is assumed that the worm population is perturbed by environmental stochastic noise causing extinction in finite time. A diffusion model of the process is formulated. With singular perturbation methods applied to the corresponding Fokker-Planck equation an estimate of the expected extinction time is derived. This chemostat can be seen as an experimental sewage-treatment system in which the worm population facilitates the reduction of remaining sludge

60J70Applications of Brownian motions and diffusion theory
Full Text: DOI
[1] Crow J.F., Kimura M. (1970). An Introduction to Population Genetics Theory. Harper and Row, New York, 591 pp. · Zbl 0246.92003
[2] Roughgarden J. (1979). Theory of Population Genetics and Evolutionary Ecology: An Introduction. Macmillan, New York, 634 pp.
[3] Hanski I. (1999). Metapopulation Ecology. Oxford University Press, Oxford, 313 pp.
[4] Grasman J., van Herwaarden O.A. (1999). Asymptotic Methods for the Fokker-Planck equation and the Exit Problem in Applications. Springer-Verlag, Heidelberg, 220 pp. · Zbl 0928.35001
[5] Freidlin M.I., Wentzell A.D. (1984). Random Perturbations of Dynamical Systems. Springer, New York, 326 pp. · Zbl 0522.60055
[6] Gardiner C.W. (1983). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, Heidelberg, 442 pp. · Zbl 0515.60002
[7] Schuss Z. (1980). Theory and Applications of Stochastic differential Equations. Wiley, New York, 321 pp. · Zbl 0439.60002
[8] Ratsak C.H. (1994). Grazer Induced Sludge Reduction in Wastewater Treatment. PhD thesis, Free University, Amsterdam 193 pp.
[9] Kooi B.W., Poggiale J.C., Auger P. (1998). Aggregation methods in food chains. Math. Computer Model. 27:109--120 · Zbl 1185.35139 · doi:10.1016/S0895-7177(98)00011-9
[10] Roozen H. (1990). Analysis of the Exit Problem for Randomly Perturbed Dynamical Systems in Applications. PhD thesis Wageningen University, Wageningen, 156 pp.
[11] Grasman J. (1996). The expected extinction time of a population within a system of interacting biological populations. Bull. Math. Biol. 58:555--568 · Zbl 0852.92024 · doi:10.1007/BF02460596
[12] Grasman J. (1998). Stochastic epidemics: the expected duration of the endemic period in higher dimensional models. Math. Biosci. 152:13--27 · Zbl 0930.92021 · doi:10.1016/S0025-5564(98)10020-2
[13] van Herwaarden O.A. (1997). Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. J. Math. Biol. 35:793--813 · Zbl 0877.92024 · doi:10.1007/s002850050077