×

zbMATH — the first resource for mathematics

Output feedback LMI tracking control conditions with \(H_\infty \) criterion for uncertain and disturbed T-S models. (English) Zbl 1158.93024
Summary: This work concerns the tracking problem of uncertain Takagi-Sugeno (T-S) continuous fuzzy model with external disturbances. The objective is to get a model reference based output feedback tracking control law. The control scheme is based on a PDC structure, a fuzzy observer and a \(H_{\infty }\) performance to attenuate the external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key point of the proposed approaches is to achieve conditions under a LMI (linear matrix inequalities) formulation in the case of an uncertain and disturbed T-S fuzzy model. This formulation facilitates obtaining solutions through interior point optimization methods for some nonlinear output tracking control problems. Finally, a simulation is provided on the well-known inverted pendulum testbed to show the efficiency of the proposed approach.

MSC:
93C42 Fuzzy control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
93B36 \(H^\infty\)-control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Assawinchaichote, W.; Nguang, S.K.; Shi, P., H∞ output feedback control design for uncertain singularly perturbed systems: an LMI approach, Automatica, 40, 12, 2147-2152, (2004) · Zbl 1059.93504
[2] Ban, X.; Gao, X.Z.; Huang, Xianlin; Vasilakos, A.V., Stability analysis of the simplest takagi – sugeno fuzzy control system using circle criterion, Information sciences, 177, 20, 4387-4409, (2007) · Zbl 1120.93031
[3] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA · Zbl 0816.93004
[4] Cao, Y.Y.; Frank, P.M., Stability analysis of nonlinear time-delay systems via linear takagi – sugeno fuzzy models, Fuzzy sets and systems, 124, 213-229, (2001) · Zbl 1002.93051
[5] Chadli, M.; Elhajjaji, A., Comment on “observer-based robust fuzzy control of nonlinear systems with parametric uncertainties”, Fuzzy sets and systems, 157, 9, 1276-1281, (2006) · Zbl 1090.93022
[6] Chen, B.S.; Tseng, C.S.; Uang, H.J., Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach, IEEE transactions on fuzzy systems, 8, 3, 249-265, (2000)
[7] Chiang, W.L.; Chen, T.W.; Liu, M.Y.; Hsu, C.J., Application and robust H∞ control of PDC fuzzy controller for nonlinear systems with external disturbance, Journal of marine science and technology, 9, 2, 84-90, (2001)
[8] N. Essounbouli, A. Hamzaoui, K. Benmahammed, Adaptation algorithm for robust fuzzy controller of nonlinear uncertain systems, in: Proceedings of the IEEE Conference on Control Applications, vol. 1, 2003, pp. 386-391.
[9] Guelton, K.; Delprat, S.; Guerra, T.M., An alternative to inverse dynamics joint torques estimation in human stance based on a takagi – sugeno unknown-inputs observer in the descriptor form, Control engineering practice, 16, 12, 1414-1426, (2008)
[10] K. Guelton, T. Bouarar, N. Manamanni, Fuzzy Lyapunov LMI based output feedback stabilization of Takagi-Sugeno systems using descriptor redundancy, in: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’08), Hong-Kong, June 1-8, 2008. · Zbl 1176.93045
[11] Guerra, T.M.; Kruszewski, A.; Vermeiren, L.; Tirmant, H., Conditions of output stabilization for nonlinear models in the takagi – sugeno’s form, Fuzzy sets and systems, 157, 1248-1259, (2006) · Zbl 1090.93023
[12] T.M. Guerra, L. Vermeiren, Stabilité et stabilisation à partir de modèles flous, in: L. Foulloy, S. Galichet, A.Titli (Eds.), Commande Floue 1: de la stabilisation à la supervision, Traités IC2, Hermes Lavoisier, Paris, 2001, pp. 59-98.
[13] Golea, N.; Golea, A.; Benmahammed, K., Fuzzy model reference adaptive control, IEEE transactions on fuzzy systems, 10, 4, 436-444, (2002) · Zbl 1037.93053
[14] Hong, S.K.; Langari, R., An LMI-based H∞ fuzzy control system design with TS framework, Information sciences, 123, 163-179, (2000) · Zbl 0953.93520
[15] Huang, D.; Nguang, S.K., Robust H-infinity static output feedback control of fuzzy systems: an ILMI approach, IEEE transactions on systems, man and cybernetics – part B, 36, 1, 216-222, (2006)
[16] Huang, D.; Nguang, S.K., Static output feedback controller design for fuzzy systems: an ILMI approach, Information sciences, 177, 14, 3005-3015, (2007) · Zbl 1120.93334
[17] Kim, W.C.; Ahn, S.C.; Kwon, W.H., Stability analysis and stabilisation of fuzzy state space models, Fuzzy sets and systems, 71, 131-142, (1995)
[18] Lam, H.K.; Frank, H.; Leung, F.; Peter, K.; Tam, S., A switching controller for uncertain nonlinear systems, IEEE control systems magazine, 7-14, (2003)
[19] Lee, K.R.; Jeung, E.T.; Park, H.B., Robust fuzzy H∞ control for uncertain nonlinear systems via state feedback: an LMI approach, Fuzzy sets and systems, 120, 123-134, (2001) · Zbl 0974.93546
[20] Y.S. Liu, C.H. Fang, A new LMI-Based approach to relaxed quadratic stabilization of TS fuzzy control systems, in: Proceedings of the IEEE International Conference on Systems Man and Cybernetics, 2003, pp. 2255-2260.
[21] Ma, X.J.; Sun, Z.Q.; He, Y.Y., Analysis and design of fuzzy controller and fuzzy observer, IEEE transactions on fuzzy systems, 6, 1, 41-50, (1998)
[22] Manamanni, N.; Mansouri, B.; Hamzaoui, A.; Zaytoon, J., Relaxed conditions in tracking control design for T-S fuzzy model, JIFS - journal of intelligent and fuzzy systems, 18, 2, 185-210, (2007) · Zbl 1134.93360
[23] Nguang, S.K.; Shi, P., Robust H-infinity output feedback control design for fuzzy dynamic systems with quadratic D stability constraints: an LMI approach, Information sciences, 176, 2161-2191, (2006) · Zbl 1177.93055
[24] Park, C.-W., LMI-based robust stability analysis for fuzzy feedback linearization regulators with its applications, Information sciences, 152, 287-301, (2003) · Zbl 1035.93044
[25] Sala, A.; Guerra, T.M.; Babuška, R., Perspectives of fuzzy systems and control, Fuzzy sets and systems, 156, 3, 432-444, (2005) · Zbl 1082.93030
[26] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modelling and control, IEEE transactions on systems, man and cybernetics, 1115, 116-132, (1985) · Zbl 0576.93021
[27] Tanaka, K.; Wang, H.O., Fuzzy control system design and analysis, A linear matrix inequality approach, (2001), Wiley New York
[28] Tanaka, K.; Ikeda, T.; Wang, H.O., Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities, IEEE transactions on fuzzy systems, 4, 1, (1996)
[29] Tanaka, K.; Ikeda, T.; Wang, H.O., Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE transactions on fuzzy systems, 6, 2, (1998)
[30] T. Taniguchi, K. Tanaka, K. Yamafuji, H.O. Wang, A new PDC Fuzzy reference models, in: Proceedings of the IEEE International Fuzzy Systems Conference, Seoul, Korea, 1999.
[31] Taniguchi, T.; Tanaka, K.; Wang, H.O., Model construction rule reduction and robust compensation for generalized form of takagi – sugeno fuzzy systems, IEEE transactions on fuzzy systems, 9, 4, 525-537, (2001)
[32] Tong, S.; Wang, T.; Li, H.X., Fuzzy robust tracking control for uncertain nonlinear systems, International journal of approximate reasoning, 30, 73-90, (2002) · Zbl 1008.93050
[33] Tseng, C.; Chen, B., H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems, IEEE transactions on fuzzy systems, 9, 6, 795-809, (2001)
[34] Tseng, C.; Chen, B.; Uang, H.J., Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model, IEEE transactions on fuzzy systems, 9, 3, 381-392, (2001)
[35] Tuan, H.D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y., Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE transactions on fuzzy systems, 9, 2, 324-332, (2001)
[36] Wang, H.O.; Tanaka, K.; Griffin, M., An approach to fuzzy control of nonlinear systems: stability and design issues, IEEE transactions on fuzzy systems, 4, 14-23, (1996)
[37] Xu, S.; Lam, J., Robust H-infinity control for uncertain discrete-time-delay fuzzy systems via output feedback controllers, IEEE transactions on fuzzy systems, 13, 1, 82-93, (2005)
[38] Yoneyama, J.; Nishikawa, M.; Katayama, H.; Ichikawa, A., Output stabilization of takagi – sugeno fuzzy systems, Fuzzy sets and systems, 111, 253-266, (2000) · Zbl 0991.93069
[39] Zerar, M.; Guelton, K.; Manamanni, N., Linear fractional transformation based H-infinity output stabilization for Takagi-sugeno fuzzy models, Mediterranean journal of measurement and control, 4, 3, 111-121, (2008)
[40] Zheng, F.; Wang, Q.G.; Lee, T.H., Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach, IEEE transactions on fuzzy systems, 10, 6, (2002)
[41] Zhou, K.; Khargonekar, P.P., Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Systems control letters, 10, 17-20, (1988) · Zbl 0634.93066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.