zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On pinning synchronization of complex dynamical networks. (English) Zbl 1158.93308
Summary: There exist some fundamental and yet challenging problems in pinning control of complex networks: (1) What types of pinning schemes may be chosen for a given complex network to realize synchronization? (2) What kinds of controllers may be designed to ensure the network synchronization? (3) How large should the coupling strength be used in a given complex network to achieve synchronization? This paper addresses these technical questions. Surprisingly, it is found that a network under a typical framework can realize synchronization subject to any linear feedback pinning scheme by using adaptive tuning of the coupling strength. In addition, it is found that the nodes with low degrees should be pinned first when the coupling strength is small, which is contrary to the common view that the most-highly-connected nodes should be pinned first. Furthermore, it is interesting to find that the derived pinning condition with controllers given in a high-dimensional setting can be reduced to a low-dimensional condition without the pinning controllers involved. Finally, simulation examples of scale-free networks are given to verify the theoretical results.

MSC:
93A15Large scale systems
93B51Design techniques in systems theory
WorldCat.org
Full Text: DOI
References:
[1] Barabási, A. L.; Albert, R.: Emergence of scaling in random networks, Science 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[2] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994) · Zbl 0816.93004
[3] Cao, J.; Li, P.; Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling, Physics letters 353, No. 4, 318-325 (2006)
[4] Chen, G.; Ueta, T.: Yet another chaotic attractor, International journal of bifurcation and chaos 9, No. 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[5] Chen, T.; Liu, X.; Lu, W.: Pinning complex networks by a single controller, IEEE transactions on circuits and systems I 54, No. 6, 1317-1326 (2007)
[6] Erdös, P.; Rényi, A.: On random graphs, Pub. math. 6, 290-297 (1959) · Zbl 0092.15705
[7] Erdös, P.; Rényi, A.: On the evolution of random graphs, Publications mathématiques. Institut de hungarian Academy of sciences 5, 17-61 (1960) · Zbl 0103.16301
[8] Grigoriev, R. O.; Cross, M. C.; Schuster, H. G.: Pinning control of spatiotemporal chaos, Physical review letters 79, No. 15, 2795-2798 (1997)
[9] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985) · Zbl 0576.15001
[10] Li, X.; Wang, X.; Chen, G.: Pinning a complex dynamical network to its equilibrium, IEEE transactions on circuits and systems I 51, No. 10, 2074-2087 (2004)
[11] Lu, W.; Chen, T.: Synchronization of coupled connected neural networks with delays, IEEE transactions on circuits and systems I 51, No. 12, 2491-2503 (2004)
[12] Lü, J.; Chen, G.: A new chaotic attractor coined, International journal of bifurcation and chaos 12, No. 3, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[13] Lü, J.; Chen, G.: A time-varying complex dynamical network models and its controlled synchronization criteria, IEEE transactions on automatic control 50, No. 6, 841-846 (2005)
[14] Lütkepohl, H.: Handbook of matrices, (1996)
[15] Lorenz, E. N.: Deterministic nonperiodic flow, Journal of atmospheric sciences 20, 130-141 (1963)
[16] Newman, M. E. J.; Watts, D. J.: Renormalization group analysis of the small-world network model, Physics letters A 263, 341-346 (1999) · Zbl 0940.82029 · doi:10.1016/S0375-9601(99)00757-4
[17] Parekh, N.; Parthasarathy, S.; Sinha, S.: Global and local control of spatiotemporal chaos in coupled map lattices, Physical review letters 81, No. 7, 1401-1404 (1998)
[18] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Physical review letters 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[19] Wang, W.; Cao, J.: Synchronization in an array of linearly coupled networks with time-varying delay, Physica A 366, 197-211 (2006)
[20] Wang, X.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility, IEEE transactions on circuits and systems I 49, 54-62 (2002)
[21] Wang, X.; Chen, G.: Synchronization in small-world dynamical networks, International journal of bifurcation and chaos 12, 187-192 (2002)
[22] Wang, X.; Chen, G.: Pinning control of scale-free dynamical networks, Physica A 310, 521-531 (2002) · Zbl 0995.90008 · doi:10.1016/S0378-4371(02)00772-0
[23] Watts, D. J.; Strogatz, S. H.: Collective dynamics of small-world networks, Nature 393, 440-442 (1998)
[24] Wu, C.: Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling, IEEE transactions on circuits and systems II 52, No. 5, 282-286 (2005)
[25] Wu, C.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical systems, IEEE transactions on circuits and systems I 42, No. 8, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[26] Xiang, J.; Chen, G.: On the V-stability of complex dynamical networks, Automatica 43, 1049-1057 (2007) · Zbl 05246818
[27] Xiang, J., & Chen, G. (2008). Analysis of pinning-controlled networks: A renormalization approach. IEEE Transactions on Automatic Control, in press
[28] Xiang, L.; Liu, Z.; Chen, Z.; Chen, F.; Yuan, Z.: Pinning control of complex dynamical networks with general topology, Physica A 379, 298-306 (2007)
[29] Yu, W.; Cao, J.: Synchronization control of stochastic delayed neural networks, Physica A 373, 252-260 (2007)
[30] Yu, W.; Cao, J.; Chen, G.: Robust adaptive control of unknown modified Cohen-Grossberg neural networks with delay, IEEE transactions on circuits and systems II 54, No. 6, 502-506 (2007)
[31] Yu, W.; Cao, J.; Chen, G.: Stability and Hopf bifurcation of a general delayed recurrent neural network, IEEE transactions on neural networks 19, No. 5, 845-854 (2008)
[32] Yu, W.; Cao, J.; Lü, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM journal on applied dynamical systems 7, No. 1, 108-133 (2008) · Zbl 1161.94011 · doi:10.1137/070679090
[33] Yu, W.; Cao, J.; Wong, K. W.; Lü, J.: New communication schemes based on adaptive synchronization, Chaos 17, 033114 (2007) · Zbl 1163.37387 · doi:10.1063/1.2767407
[34] Yu, W.; Chen, G.; Cao, J.; Lü, J.; Parlitz, U.: Parameter identification of dynamical systems from time series, Physics review E 75, No. 6, 067201 (2007)
[35] Zhou, J.; Lu, J.; Lü, J.: Adaptive synchronization of an uncertain complex dynamical network, IEEE transactions on automatic control 51, No. 4, 652-656 (2006)
[36] Zhou, J.; Lu, J.; Lü, J.: Pinning adaptive synchronization of a general complex dynamical network, Automatica 44, No. 4, 996-1003 (2008) · Zbl 1283.93032