Ding, Feng; Qiu, Li; Chen, Tongwen Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. (English) Zbl 1158.93365 Automatica 45, No. 2, 324-332 (2009). Summary: A continuous-time system cannot be recovered solely from its uniformly sampled discrete-time model through the zero-order hold discretization or step-invariant transformation, but our studies indicate that it can be recovered uniquely from its non-uniformly sampled discrete-time model. In this paper, we discuss some related issues of non-uniformly sampled systems, including model derivation, controllability and observability, computation of single-rate models with different sampling periods, reconstruction of continuous-time systems, and parameter identification of non-uniformly sampled discrete-time systems. A numerical example is also given for illustration. Cited in 88 Documents MSC: 93C57 Sampled-data control/observation systems 93C55 Discrete-time control/observation systems Keywords:reconstruction; discrete-time systems; discretization; sampling; estimation; multirate systems; non-uniform sampling PDF BibTeX XML Cite \textit{F. Ding} et al., Automatica 45, No. 2, 324--332 (2009; Zbl 1158.93365) Full Text: DOI OpenURL References: [1] Albertos, P.; Crespo, A., Real-time control of non-uniformly sampled systems, Control engineering practice, 7, 445-458, (1999) [2] Bingulac, S.; Cooper, D.L., Derivation of discrete and continuous time ramp invariant representations, Electronics letters, 26, 10, 664-666, (1990) [3] Chen, T.; Francis, B., Optimal sampled-data control systems, (1995), Springer-Verlag London · Zbl 0847.93040 [4] Chen, T.; Miller, D., Reconstruction of continuous-time systems from their discretizations, IEEE transactions on automatic control, 45, 10, 1914-1917, (2000) · Zbl 0991.93074 [5] Chen, T.; Qiu, L., \(H_\infty\) design of general multirate sampled-data control systems, Automatica, 30, 7, 1139-1152, (1994) · Zbl 0806.93038 [6] Ding, F.; Chen, T., Least squares based self-tuning control of dual-rate systems, International journal of adaptive control and signal processing, 18, 8, 697-714, (2004) · Zbl 1055.93044 [7] Ding, F.; Chen, T., Identification of dual-rate systems based on finite impulse response models, International journal of adaptive control and signal processing, 18, 7, 589-598, (2004) · Zbl 1055.93018 [8] Ding, F.; Chen, T., Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica, 40, 10, 1739-1748, (2004) · Zbl 1162.93376 [9] Ding, F.; Chen, T., Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 2, 315-325, (2005) · Zbl 1073.93012 [10] Ding, F.; Chen, T., Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control, 50, 3, 397-402, (2005) · Zbl 1365.93551 [11] Ding, F.; Chen, T., Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control, 50, 9, 1436-1441, (2005) · Zbl 1365.93480 [12] Ding, F.; Chen, T., Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems-I: regular papers, 52, 6, 1179-1187, (2005) · Zbl 1374.93342 [13] Ding, F.; Chen, T., Performance analysis of multi-innovation gradient type identification methods, Automatica, 43, 1, 1-14, (2007) · Zbl 1140.93488 [14] Ding, F.; Chen, T.; Iwai, Z., Adaptive digital control of Hammerstein nonlinear systems with limited output sampling, SIAM journal on control and optimization, 45, 6, 2257-2276, (2007) · Zbl 1126.93034 [15] Ding, J.; Ding, F., The residual based extended least squares identification method for dual-rate systems, Computers mathematics with applications, 56, 6, 1479-1487, (2008) · Zbl 1155.93435 [16] Francis, B.A.; Georgiou, T.T., Stability theory for linear time-invariant plants with periodic digital controllers, IEEE transactions on automatic control, 33, 9, 820-832, (1988) · Zbl 0651.93053 [17] Goodwin, G.C.; Sin, K.S., Adaptive filtering, prediction and control, (1984), Prentice-Hall Englewood Cliffs, NJ · Zbl 0653.93001 [18] Gudi, R.D.; Shah, S.L.; Gray, M.R., Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements, Biotechnology and bioengineering, 44, 11, 1271-1278, (1994) [19] Gudi, R.D.; Shah, S.L.; Gray, M.R., Adaptive multirate state and parameter estimation strategies with application to a bioreactor, Aiche journal, 41, 11, 2451-2464, (1995) [20] Kreisselmeier, G., On sampling without loss of observability/controllability, IEEE transactions on automatic control, 44, 5, 1021-1025, (1999) · Zbl 0956.93037 [21] Li, W.; Han, Z.; Shah, S.L., Subspace identification for FDI in systems with non-uniformly sampled multirate data, Automatica, 42, 4, 619-627, (2006) · Zbl 1102.93013 [22] Ljung, L., System identification: theory for the user, (1999), Prentice-Hall Englewood Cliffs, NJ [23] Qiu, L.; Chen, T., Multirate sampled-data systems: all \(H_\infty\) suboptimal controllers and the minimum entropy controller, IEEE transactions on automatic control, 44, 3, 537-550, (1999) · Zbl 0958.93031 [24] Scattolini, R.; Schiavoni, N., A multirate model-based predictive controller, IEEE transactions on automatic control, 40, 1093-1097, (1995) · Zbl 0825.93970 [25] Sheng, J.; Chen, T.; Shah, S.L., Generalized predictive control for non-uniformly sampled systems, Journal of process control, 12, 8, 875-885, (2002) [26] Sinha, N.K.; Lastman, G.J., Identification of continuous-time multivariable systems from sampled data, International journal of control, 35, 1, 117-126, (1982) · Zbl 0473.93071 [27] Tatiraju, S.; Soroush, M.; Mutharasan, R., Multirate nonlinear state and parameter estimation in a bioreactor, Biotechnology and bioengineering, 63, 1, 22-32, (1999) [28] Zhang, C.; Middleton, R.H.; Evans, R.J., An algorithm for multirate sampling adaptive control, IEEE transactions on automatic control, 34, 792-795, (1989) · Zbl 0687.93053 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.