zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inverse optimal stabilization for stochastic nonlinear systems whose linearizations are not stabilizable. (English) Zbl 1158.93411
Summary: After considering the stabilization of a class of high-order stochastic nonlinear systems which are neither necessarily feedback linearizable nor affine in the control input, in this brief paper, we further address the problem of state-feedback inverse optimal stabilization in probability, i.e., our redesigned stabilizing backstepping controller is also optimal with respect to meaningful cost functionals.

MSC:
93E15Stochastic stability
93E10Estimation and detection in stochastic control
93E03General theory of stochastic systems
WorldCat.org
Full Text: DOI
References:
[1] Deng, H.; Krstić, M.: Stochastic nonlinear stabilization, part i: A backstepping design, Systems and control letters 32, 143-150 (1997) · Zbl 0902.93049 · doi:10.1016/S0167-6911(97)00068-6
[2] Deng, H.; Krstić, M.: Stochastic nonlinear stabilization, part ii: Inverse optimality, Systems and control letters 32, 151-159 (1997) · Zbl 0902.93050 · doi:10.1016/S0167-6911(97)00067-4
[3] Deng, H.; Krstić, M.: Output-feedback stochastic nonlinear stabilization, IEEE transactions on automatic control 44, 328-333 (1999) · Zbl 0958.93095 · doi:10.1109/9.746260
[4] Deng, H.; Krstić, M.: Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance, Systems and control letters 39, 173-182 (2000) · Zbl 0948.93053 · doi:10.1016/S0167-6911(99)00084-5
[5] Deng, H.; Krstić, M.; Williams, R. J.: Stabilization of stochastic nonlinear driven by noise of unknown covariance, IEEE transactions on automatic control 46, 1237-1253 (2001) · Zbl 1008.93068 · doi:10.1109/9.940927
[6] Freeman, R. A.; Kokotović, P. V.: Robust nonlinear control design: state-space and Lyapunov techniques, (1996) · Zbl 0857.93001
[7] Krstić, M.; Deng, H.: Stabilization of uncertain nonlinear systems, (1998) · Zbl 0906.93001
[8] Krstić, M.; Li, Z. H.: Inverse optimal design of input to state stabilizing nonlinear controllers, IEEE transactions on automatic control 43, 336-350 (1998) · Zbl 0910.93064 · doi:10.1109/9.661589
[9] Lin, W. http://nonlinear.case.edu/linwei/
[10] Liu, S. J.; Zhang, J. F.; Jiang, Z. P.: Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica 43, 238-251 (2007) · Zbl 1115.93076 · doi:10.1016/j.automatica.2006.08.028
[11] Liu, Y.; Zhang, J. F.; Pan, Z. G.: Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index, Science in China (Scientia scinica). Series F 46, 126-145 (2003) · Zbl 1185.93046 · doi:10.1360/03yf9011
[12] Liu, Y.; Pan, Z. G.; Shi, S.: Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost, IEEE transactions on automatic control 48, 509-514 (2003)
[13] Liu, Y.; Zhang, J.: Reduced-order observer-based control design for nonlinear stochastic systems, Systems and control letters 52, 123-135 (2004) · Zbl 1157.93538 · doi:10.1016/j.sysconle.2003.11.006
[14] Liu, Y.; Zhang, J.: Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems, Science in China (Scientia sinica). Series F 47, 527-544 (2004) · Zbl 1186.93065 · doi:10.1360/03yf0079
[15] Liu, Y.; Zhang, J.: Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero-dynamics, SIAM journal on control and optimization 45, 885-926 (2006) · Zbl 1117.93067 · doi:10.1137/S0363012903439185
[16] Luo, W. C.; Chu, Y. C.; Ling, K. V.: Inverse optimal adaptive control for attitude tracking of spacecraft, IEEE transactions on automatic control 50, 1639-1654 (2005)
[17] Pan, Z. G.; Basar, T.: Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems, IEEE transactions on automatic control 43, 1066-1083 (1998) · Zbl 0957.93046 · doi:10.1109/9.704978
[18] Pan, Z. G.; Basar, T.: Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM journal on control and optimization 37, 957-995 (1999) · Zbl 0924.93046 · doi:10.1137/S0363012996307059
[19] Pan, Z. G.; Liu, Y.; Shi, S.: Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics, Science in China 44, 292-308 (2001) · Zbl 1125.93489 · doi:10.1007/BF02714717
[20] Pan, Z. G.; Ezal, K.; Krener, A.; Kokotović, P. V.: Backstepping design with local optimality matching, IEEE transactions on automatic control 46, 1014-1027 (2001) · Zbl 1007.93025 · doi:10.1109/9.935055
[21] Qian, C.J. Global synthesis of nonlinear systems with uncontrollable linearrization. Doctoral dissertation. Ann Arbor, Mich.: UMI
[22] Wu, Z. J.; Xie, X. J.; Zhang, S. Y.: Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function, International journal of control 79, 1635-1646 (2006) · Zbl 1124.93057 · doi:10.1080/00207170600893004
[23] Wu, Z. J.; Xie, X. J.; Zhang, S. Y.: Adaptive backstepping controller design using stochastic small-gain theorem, Automatica 43, 608-620 (2007) · Zbl 1114.93104 · doi:10.1016/j.automatica.2006.10.020
[24] Xie, X. J.; Tian, J.: State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics, International journal of robust and nonlinear control 17, 1343-1362 (2007) · Zbl 1127.93354 · doi:10.1002/rnc.1177