zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Elliptic curve based hardware architecture using cellular automata. (English) Zbl 1158.94385
Summary: This study presents an efficient division architecture using restricted irreducible polynomial on elliptic curve cryptosystem (ECC), based on cellular automata. The most expensive arithmetic operation in ECC is division, which is performed by multiplying the inverse of a multiplicand. The proposed architecture is highly regular, expandable, and has reduced latency and hardware complexity. The proposed architecture can be efficiently used in the hardware design of crypto-coprocessors.
68Q80Cellular automata (theory of computing)
65Y99Computer aspects of numerical algorithms
Full Text: DOI
[1] Choudhury, P. P.; Barua, R.: Cellular automata based VLSI architecture for computing multiplication and inverses in $GF(2m)$, , 279-282 (1994)
[2] Diffie, W.; Hellman, M. E.: New directions in cryptography, IEEE transaction on information theory 22, 644-654 (1976) · Zbl 0435.94018 · doi:10.1109/TIT.1976.1055638
[3] Drescher, W.; Bachmann, K.; Fettweis, G.: VLSI architecture for non sequential inversion over $GF(2m)$ using the Euclidean algorithm, , 1815-1819 (1997)
[4] Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE trans. Inform. theory 31, 469-472 (1985) · Zbl 0571.94014 · doi:10.1109/TIT.1985.1057074
[5] Gajski, D. D.: Principles of digital design, (1997)
[6] IEEE P1363, Standard Specifications for Public Key Cryptography, 2000.
[7] Jeon, J. C.; Yoo, K. Y.: An evolutionary approach to the design of cellular automata architecture for multiplication in elliptic curve cryptography over finite fields, An evolutionary approach to the design of cellular automata architecture for multiplication in elliptic curve cryptography over finite fields 3157 (2004)
[8] Kaufman, C.; Perlman, R.; Speciner, M.: Network security private communication in a public world, (2002)
[9] Kim, N. Y.; Yoo, K. Y.: Systolic architecture for inversion/division using AB2 circuits in $GF(2m)$, Integr. VLSI J. 35, 11-24 (2003)
[10] Koblitz, N.: Elliptic curve cryptosystems, Math. comput. 48, 203-209 (1987) · Zbl 0622.94015 · doi:10.2307/2007884
[11] Menezes, A. J.: Applications of finite fields, (1993) · Zbl 0779.11059
[12] Menezes, A. J.: Elliptic curve public key cryptosystems, (1993) · Zbl 0806.94011
[13] Miller, V. S.: Use of elliptic curves in cryptography, (1986) · Zbl 0589.94005
[14] Von Neumann, J.: The theory of self-reproducing automata, (1966)
[15] Rao, T. R. N.; Fujiwara, E.: Error-control coding for computer systems, (1989)
[16] SEC 1, Elliptic Curve Cryptography version 1.0., Certicom Research, 2000.
[17] Wang, C. L.; Guo, J. H.: New systolic arrays for C+AB2, inversion, and division in $GF(2m)$, IEEE trans. Comp. 49, 1120-1125 (2000) · Zbl 1315.68296
[18] Wei, S. W.: VLSI architecture of divider for finite field $GF(2m)$, , 482-485 (1998)
[19] Zhang, C. N.; Deng, M. Y.; Mason, R.: A VLSI programmable cellular automata array for multiplication in $GF(2n)$, (1999)