×

On an extension of the Hilbertian central limit theorem to Dirichlet forms. (English) Zbl 1159.31003

N. Bouleau [J. Math. Pures Appl., IX. Sér. 80, No. 9, 961–976 (2001; Zbl 1031.31005)] introduced a new tool, based on the language of Dirichlet forms, in order to study the propagation of errors and reinforce the historical approach of Gauss. In the same way that the practical use of the normal distribution in statistics may be explained by the central limit theorem, the aim of this paper is to underline the importance of a family of error structures by asymptotic arguments.

MSC:

31C25 Dirichlet forms
47B25 Linear symmetric and selfadjoint operators (unbounded)
49Q12 Sensitivity analysis for optimization problems on manifolds
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)
60F05 Central limit and other weak theorems

Citations:

Zbl 1031.31005

References:

[1] N. Bouleau and F. Hirsch: Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991. · Zbl 0748.60046 · doi:10.1515/9783110858389
[2] N. Bouleau: Calcul d’erreur complet lipschitzien et formes de Dirichlet , J. Math. Pures Appl. (9) 80 (2001), 961–976. · Zbl 1031.31005 · doi:10.1016/S0021-7824(01)01206-5
[3] N. Bouleau: Error Calculus for Finance and Physics: the Language of Dirichlet Forms, de Gruyter, Berlin, 2003.
[4] N. Bouleau and C. Chorro: Error structures and parameter estimation , C.R. Math. Acad. Sci. Paris 338 (2004), 305–310. · Zbl 1035.62014 · doi:10.1016/j.crma.2003.11.016
[5] N. Bouleau: Théorème de Donsker et formes de Dirichlet , Bull. Sci. Math. 129 (2005), 369\nobreakdash–380. · Zbl 1093.60018 · doi:10.1016/j.bulsci.2004.09.005
[6] C. Chorro: Convergence in Dirichlet law of certain stochastic integrals , Electron. J. Probab. 10 (2005), 1005–1025. · Zbl 1109.60007
[7] R.M. Dudley: Metric entropy and the central limit theorem in \(C(S)\) , Ann. Inst. Fourier (Grenoble) 24 (1974), v, 49–60. · Zbl 0275.60033 · doi:10.5802/aif.505
[8] D. Feyel and A. de La Pradelle: Espaces de Sobolev Gaussiens , Ann. Inst. Fourier (Grenoble) 39 (1989), 875–908. · Zbl 0664.46028 · doi:10.5802/aif.1193
[9] M. Fukushima: Dirichlet Forms and Symmetric Markov Processes, North-Holland, Amsterdam, 1980. · Zbl 0422.31007
[10] B. Goldys, F. Gozzi and J.M.A.M. van Neerven: On closability of directional gradients , Potential Anal. 18 (2003), 289–310. · Zbl 1055.60053 · doi:10.1023/A:1021832202659
[11] T. Kato: Perturbation Theory for Linear Operators, Springer, Berlin, 1992. · Zbl 0836.47009
[12] H.H. Kuo: Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463 , Springer, Berlin, 1975. · Zbl 0306.28010 · doi:10.1007/BFb0082007
[13] M. Ledoux and M. Talagrand: Probability in Banach Spaces, Springer, Berlin, 1991. · Zbl 0748.60004
[14] Z.M. Ma and M. Röckner: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer, Berlin, 1992. · Zbl 0852.16022
[15] D. Nualart: The Malliavin Calculus and Related Topics, Springer, New York, 1995. · Zbl 0837.60050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.