×

Fractional functional differential inclusions with finite delay. (English) Zbl 1159.34010

The authors present an existence theorem for solutions of delay differential inclusions of fractional order and discuss some related questions.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K09 Functional-differential inclusions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubin, J. P.; Cellina, A., Differential Inclusions (1984), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0538.34007
[2] Aubin, J. P.; Frankowska, H., Set-Valued Analysis (1990), Birkhauser: Birkhauser Boston · Zbl 0713.49021
[3] Bai, Z.; Lu, H., Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048
[4] Belarbi, A.; Benchohra, M.; Ouahab, A., Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal., 85, 1459-1470 (2006) · Zbl 1175.34080
[5] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A., Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338, 1340-1350 (2008) · Zbl 1209.34096
[6] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A., Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., 11, 35-56 (2008) · Zbl 1149.26010
[7] Castaing, C.; Valadier, M., (Convex Analysis and Measurable Multifunctions. Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580 (1977), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York) · Zbl 0346.46038
[8] Covitz, H.; Nadler, S. B., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8, 5-11 (1970) · Zbl 0192.59802
[9] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204, 609-625 (1996) · Zbl 0881.34005
[10] Diethelm, K.; Freed, A. D., On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, (Keil, F.; Mackens, W.; Voss, H.; Werther, J., Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (1999), Springer-Verlag: Springer-Verlag Heidelberg), 217-224
[11] Deimling, K., Multivalued Differential Equations (1992), de Gruyter: de Gruyter Berlin-New York · Zbl 0760.34002
[12] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003
[13] Diethelm, K.; Walz, G., Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16, 231-253 (1997) · Zbl 0926.65070
[14] El-Sayed, A. M.A., Fractional order evolution equations, J. Fract. Calc., 7, 89-100 (1995) · Zbl 0839.34069
[15] El-Sayed, A. M.A., Fractional order diffusion-wave equations, Internat. J. Theoret. Phys., 35, 311-322 (1996) · Zbl 0846.35001
[16] El-Sayed, A. M.A., Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal., 33, 181-186 (1998) · Zbl 0934.34055
[17] El-Sayed, A. M.A.; Ibrahim, A. G., Multivalued fractional differential equations, Appl. Math. Comput., 68, 15-25 (1995) · Zbl 0830.34012
[18] El-Raheem, Z., Modification of the application of a contraction mapping method on a class of fractional differential equation, Appl. Math. Comput., 137, 371-374 (2003) · Zbl 1034.34070
[19] Frigon, M., Fixed point results for multivalued contractions on gauge spaces, set valued mappings with applications in nonlinear analysis, (Ser. Math. Anal. Appl., vol. 4 (2002), Taylor& Francis: Taylor& Francis London), 175-181 · Zbl 1013.47013
[20] Gaul, L.; Klein, P.; Kempfle, S., Damping description involving fractional operators, Mech. Syst. Signal Process., 5, 81-88 (1991)
[21] Glockle, W. G.; Nonnenmacher, T. F., A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68, 46-53 (1995)
[22] Górniewicz, L., Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications, 495 (1999), Kluwer: Kluwer Dordrecht · Zbl 0937.55001
[23] Hu, Sh.; Papageorgiou, N. S., Handbook of Multivalued Analysis, Volume I: Theory (1997), Kluwer: Kluwer Dordrecht, Boston, London · Zbl 0887.47001
[24] Hu, S.; Papageorgiou, N. S., Handbook of Multivalued Analysis, Volume II: Applications (2000), Kluwer: Kluwer Dordrecht, The Netherlands · Zbl 0943.47037
[25] Henry, D., Geometric Theory of Semilinear Parabolic Partial Differential Equations (1989), Springer-Verlag: Springer-Verlag Berlin/New York
[26] Henderson, J.; Ouahab, A., Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ., 11, 1-17 (2005) · Zbl 1111.34045
[27] Henderson, J.; Ouahab, A., Global existence results for impulsive functional differential inclusions with multiple delay in Fréchet Spaces, Panamer. Math. J., 15, 73-89 (2005) · Zbl 1092.34038
[28] Hiai, F.; Umegaki, H., Integral conditional expectations, and martingales of multivalued functions, J. Multivariate Anal., 7, 149-182 (1977) · Zbl 0368.60006
[29] Kamenskii, M.; Obukhovskii, V.; Zecca, P., Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces (2001), de Gruyter: de Gruyter Berlin · Zbl 0988.34001
[30] Kisielewicz, M., Differential Inclusions and Optimal Control (1991), Kluwer: Kluwer Dordrecht, The Netherlands · Zbl 0731.49001
[31] Kilbas, A. A.; Trujillo, J. J., Differential equations of fractional order: Methods, results and problems II, Appl. Anal., 81, 435-493 (2002) · Zbl 1033.34007
[32] Lakshmikantham, V., Theory of fractional functional differential equations, Nonlinear Anal. (2007) · Zbl 1162.34344
[33] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Anal. (2007) · Zbl 1159.34006
[34] V. Lakshmikantham, A.S. Vatsala, Theory of fractional differential inequalities and applications, Comm. Appl. Anal. (in press); V. Lakshmikantham, A.S. Vatsala, Theory of fractional differential inequalities and applications, Comm. Appl. Anal. (in press) · Zbl 1159.34006
[35] Lakshmikantham, V.; Vatsala, A. S., General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett. (2007) · Zbl 1161.34031
[36] Mainardi, F., Fractional calculus: Some basic problems in continuum and statistical mechanis, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer-Verlag: Springer-Verlag Wien), 291-348 · Zbl 0917.73004
[37] Metzler, F.; Schick, W.; Kilian, H. G.; Nonnenmacher, T. F., Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103, 7180-7186 (1995)
[38] Momani, S. M.; Hadid, S. B., Some comparison results for integro-fractional differential inequalities, J. Fract. Calc., 24, 37-44 (2003) · Zbl 1057.45003
[39] Momani, S. M.; Hadid, S. B.; Alawenh, Z. M., Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci., 697-701 (2004) · Zbl 1069.34002
[40] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), John Wiley: John Wiley New York · Zbl 0789.26002
[41] Nakhushev, A. M., The Sturm-Liouville problems for a second order ordinary equations with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR, 234, 308-311 (1977)
[42] Ouahab, A., Some results for fractional boundary value problem of differential inclusions, Nonlinear Anal. (2007)
[43] Podlubny, I., Fractional Differential Equation (1999), Academic Press: Academic Press San Diego · Zbl 0893.65051
[44] Podlubny, I.; Petraš, I.; Vinagre, B. M.; O’Leary, P.; Dorčak, L., Analogue realizations of fractional-order controllers, Fractional order calculus and its applications, Nonlinear Dynam., 29, 281-296 (2002) · Zbl 1041.93022
[45] Samako, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[46] Smirnov, G. V., Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics, vol. 41 (2002), American Mathematical Society: American Mathematical Society Providence · Zbl 0992.34001
[47] Tolstonogov, A. A., Differential Inclusions in a Banach Space (2000), Kluwer: Kluwer Dordrecht, The Netherlands · Zbl 0990.49002
[48] Yu, C.; Gao, G., Some results on a class of fractional functional differential equations, Comm. Appl. Nonlinear Anal., 11, 67-75 (2004) · Zbl 1051.34048
[49] Yu, C.; Gao, G., Existence of fractional differential equations, J. Math. Anal. Appl., 310, 26-29 (2005) · Zbl 1088.34501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.