## Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations.(English)Zbl 1159.34022

The authors consider the impulsive boundary value problem for ordinary differential equation of second order
\begin{aligned} -x''(t) = f(t,x(t)),&\quad t \in [0,1]\setminus\{t_1,\dots,t_n\}, \\ -\triangle x'| _{t = t_k} = I_k(x(t_k)), &\quad k = 1,\dots,n,\\ x(0) = \sum_{i=1}^{m-2} a_i x(\xi_i), &\quad x(1) = \sum_{i=1}^{m-2} b_ix(\xi_i). \end{aligned}
where $$0 < t_1 < \dots < t_n < 1$$, $$f \in C([0,1]\times {\mathbb R}^+,{\mathbb R}^+)$$, $$I_k \in C({\mathbb R}^+,{\mathbb R}^+)$$ for $$k = 1,\dots,n$$, $$a_i$$, $$b_i \in {\mathbb R}$$ are positive, $$\xi_i \neq t_k$$ for $$i=1,\dots,m-2$$, $$j = 1,\dots,n$$. Sufficient conditions to ensure the existence of at least one or two positive solutions are given. The proofs are based on a fixed-point theorem in cones.

### MSC:

 34B37 Boundary value problems with impulses for ordinary differential equations 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 47N20 Applications of operator theory to differential and integral equations
Full Text:

### References:

 [1] Lakshmikantham, V.; Bainov, D.; Simeonov, P., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002 [2] Bainov, D.; Simeonov, P., Systems with impulse effect, (1989), Ellis Horwood Chichister · Zbl 0684.34056 [3] Samoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore · Zbl 0837.34003 [4] Feng, M.; Pang, H., A class of three point boundary value problems for second order impulsive integro-differential equations in Banach spaces, Nonlinear anal., (2007) [5] Wei, Z., Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces, J. math. anal. appl., 195, 214-229, (1995) · Zbl 0849.45006 [6] Hristova, S.; Bainov, D., Monotone-iterative techniques of V. lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations, J. math. anal. appl., 1997, 1-13, (1996) · Zbl 0849.34051 [7] Liu, X.; Guo, D., Periodic boundary value problems for a class of second-order impulsive integro-differential equations in Banach spaces, Appl. math. comput., 216, 284-302, (1997) · Zbl 0889.45016 [8] Agarwal, R.P.; O’Regan, D., Multiple nonnegative solutions for second order impulsive differential equations, Appl. math. comput., 114, 51-59, (2000) · Zbl 1047.34008 [9] Liu, B.; Yu, J., Existence of solution for $$m$$-point boundary value problems of second-order differential systems with impulses, Appl. math. comput., 125, 155-175, (2002) · Zbl 1032.34024 [10] Ding, W.; Han, M., Periodic boundary value problem for the second order impulsive functional differential equations, Appl. math. comput., 155A, 709-726, (2004) · Zbl 1064.34067 [11] Lee, E.; Lee, Y., Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation, Appl. math. comput., 158, 745-759, (2004) · Zbl 1069.34035 [12] Il’in, V.; Moiseev, E., Nonlocal boundary value problem of the second kind for a sturm – liouville operator, Differ. equ., 23, 979-987, (1987) · Zbl 0668.34024 [13] Ma, R., Multiplicity of positive solutions for second-order three-point boundary value problems, Comput. math. appl., 40, 193-204, (2000) · Zbl 0958.34019 [14] Ma, R.; Castaneda, N., Existence of solutions of nonlinear $$m$$-point boundary-value problems, J. math. anal. appl., 256, 556-567, (2001) · Zbl 0988.34009 [15] Ma, R.; Wang, H., Positive solutions of nonlinear three-point boundary-value problems, J. math. anal. appl., 279, 216-227, (2003) · Zbl 1028.34014 [16] Ma, R.; Thompson, B., Positive solutions for nonlinear $$m$$-point eigenvalue problems, J. math. anal. appl., 297, 24-37, (2004) · Zbl 1057.34011 [17] Ma, R., Multiple positive solutions for nonlinear $$m$$-point boundary value problems, Appl. math. comput., 148, 249-262, (2004) · Zbl 1046.34030 [18] Guo, D.; Lakshmikantham, V., Nonlinear problems in abstract cones, (1988), Academic Press, Inc. NewYork · Zbl 0661.47045 [19] Bai, Z.; Du, Z., Positive solutions for some second-order four-point boundary value problems, J. math. anal. appl., 330, 34-50, (2007) · Zbl 1115.34016 [20] Bai, Z.; Ge, W.; Wang, Y., Multiplicity results for some second-order four-point boundary value problems, Nonlinear anal., 60, 491-500, (2005) · Zbl 1088.34015 [21] Bai, Z.; Li, W.; Ge, W., Existence and multiplicity of solutions for four-point boundary value problems at resonance, Nonlinear anal., 60, 1151-1162, (2005) · Zbl 1070.34026 [22] He, X.; Ge, W., Triple positive solutions for second-order three-point boundary value problems, J. math. anal. appl., 268, 256-265, (2002) · Zbl 1043.34015 [23] Guo, Y.; Ge, W., Positive solutions for three-point boundary value problems with dependence on the first order derivative, J. math. anal. appl., 290, 291-301, (2004) · Zbl 1054.34025 [24] Cheung, W.; Ren, J., Positive solutions for $$m$$-point boundary-value problems, J. math. anal. appl., 303, 565-575, (2005) · Zbl 1071.34020 [25] Gupta, C., A generalized multi-point boundary value problem for second order ordinary differential equations, Appl. math. comput., 89, 133-146, (1998) · Zbl 0910.34032 [26] Feng, W., On a $$m$$-point nonlinear boundary value problems, Nonlinear anal., 30, 5369-5370, (1997) [27] Feng, W.; Webb, J.R.L., Solvability of a $$m$$-point boundary value problems with nonlinear growth, J. math. anal. appl., 212, 467-480, (1997) · Zbl 0883.34020 [28] Feng, W.; Webb, J.R.L., Solvability of a three-point nonlinear boundary value problems at resonance, Nonlinear anal., 30, 3227-3238, (1997) · Zbl 0891.34019 [29] Zhang, Z.; Wang, J., The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. comput. appl. math., 147, 41-52, (2002) · Zbl 1019.34021 [30] Zhang, G.; Sun, J., Positive solutions of $$m$$-point boundary value problems, J. math. anal. appl., 291, 406-418, (2004) · Zbl 1069.34037 [31] Feng, M.; Ge, W., Positive solutions for a class of $$m$$-point singular boundary value problems, Math. comput. modelling, 46, 375-383, (2007) · Zbl 1142.34012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.