Bereketoǧlu, Hüseyin; Karakoç, Fatma Asymptotic constancy for impulsive delay differential equations. (English) Zbl 1159.34052 Dyn. Syst. Appl. 17, No. 1, 71-83 (2008). Sufficient conditions for asymptotic constancy and estimations of the limits of solutions are obtained for the following impulsive system \[ \begin{aligned} \dot{x}(t)&= A(t)[x(t-\sigma)-x(t-\tau)]+f(t),\quad t\geq t_0,\;t\not= t_i,\\ \Delta x(t_i)&= B_ix(t_i)+D_i, \quad i=1,2,\dots. \end{aligned} \] Reviewer: Leonid Berezanski (Beer-Sheva) Cited in 13 Documents MSC: 34K45 Functional-differential equations with impulses 34K06 Linear functional-differential equations Keywords:asymptotic constancy; impulsive delay differential equations PDF BibTeX XML Cite \textit{H. Bereketoǧlu} and \textit{F. Karakoç}, Dyn. Syst. Appl. 17, No. 1, 71--83 (2008; Zbl 1159.34052) OpenURL