zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitons and singular solitons for the Gardner-KP equation. (English) Zbl 1159.35432
Summary: We present a reliable treatment for the Gardner-KP (GKP) equation. The Hirota’s bilinear method is used to obtain multiple-soliton solutions for this completely integrable equation. Multiple singular soliton solutions are obtained as well. The study highlights a variety of multi-solitary wave and multi-singular solitary solutions of the Gardner-KP equation.

MSC:
35Q58Other completely integrable PDE (MSC2000)
35Q51Soliton-like equations
WorldCat.org
Full Text: DOI
References:
[1] Gardner, C.; Greene, J.; Kruskal, M.; Miura, R.: Method for solving the Korteweg-de Vries equation. Phys. rev. Lett. 19, 1095-1097 (1967) · Zbl 1061.35520
[2] Wazwaz, A. M.: New solitons and kink solutions for the gardner equation. Commun. nonlinear sci. Numer. simul. 12, No. 8, 1395-1404 (2007) · Zbl 1118.35352
[3] Ito, M.: An extension of nonlinear evolution equations of the K-dv (mK-dv) type to higher order. J. phys. Soc. jpn. 49, No. 2, 771-778 (1980)
[4] Hirota, R.; Ito, M.: Resonance of solitons in one dimension. J. phys. Soc. jpn. 52, No. 3, 744-748 (1983)
[5] Hirota, R.; Satsuma, J.: N-soliton solutions of model equations for shallow water waves. J. phys. Soc. jpn. 40, No. 2, 611-612 (1976)
[6] Hirota, R.: A new form of Bäcklund transformations and its relation to the inverse scattering problem. Prog. theor. Phys. 52, No. 5, 1498-1512 (1974) · Zbl 1168.37322
[7] Hirota, R.: The direct method in soliton theory. (2004) · Zbl 1099.35111
[8] Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. rev. Lett. 27, No. 18, 1192-1194 (1971) · Zbl 1168.35423
[9] Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations. J. math. Phys. 28, No. 8, 1732-1742 (1987) · Zbl 0641.35073
[10] Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. II. mkdv-type bilinear equations. J. math. Phys. 28, No. 9, 2094-2101 (1987) · Zbl 0658.35081
[11] W. Hereman, W. Zhuang, A MACSYMA program for the Hirota method, in: Proceedings of the 13th World Congress on Computation and Applied Mathematics, vol. 2, 1991, pp. 842 -- 863.
[12] Hereman, W.; Zhuang, W.: Symbolic computation of solitons with MACSYMA. Comput. appl. Math. II: differ. Eq., 287-296 (1992) · Zbl 0765.35048
[13] W. Hereman, W. Zhuang, A MACSYMA program for the Hirota method, in: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, 1991, pp. 22 -- 26.
[14] Matsuno, Y.: Bilinear transformation method. (1984) · Zbl 0552.35001
[15] Wazwaz, A. M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh -- coth method. Appl. math. Comput. 190, 633-640 (2007) · Zbl 1243.35148
[16] Wazwaz, A. M.: Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl. math. Comput. 190, 1198-1206 (2007) · Zbl 1123.65106
[17] Wazwaz, A. M.: Multiple-soliton solutions for the Boussinesq equation. Appl. math. Comput. 192, 479-486 (2007) · Zbl 1193.35201
[18] Wazwaz, A. M.: The Hirota’s direct method and the tanh -- coth method for multiple-soliton solutions of the Sawada-Kotera-Itô seventh-order equation. Appl. math. Comput. 199, No. 1, 133-138 (2008) · Zbl 1153.65363
[19] Wazwaz, A. M.: Multiple-front solutions for the Burgers -- Kadomtsev -- petvisahvili equation. Appl. math. Comput. 200, 437-443 (2008) · Zbl 1153.65365
[20] Wazwaz, A. M.: Multiple-soliton solutions for the Lax -- Kadomtsev -- petvisahvili (Lax -- KP) equation. Appl. math. Comput. 201, No. 1/2, 168-174 (2008) · Zbl 1155.65383
[21] Wazwaz, A. M.: The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl. math. Comput. 201, No. 1/2, 489-503 (2008) · Zbl 1143.76018
[22] Wazwaz, A. M.: Multiple-soliton solutions of two extended model equations for shallow water waves. Appl. math. Comput. 201, No. 1/2, 790-799 (2008) · Zbl 1165.76007