Noncoherence of a causal Wiener algebra used in control theory. (English) Zbl 1159.46032

Let \(R\) be a commutative ring with identity element 1 and let \(R^m=R\times\dots\times R\) (\(m\) times). Suppose that \(f=(f_1, f_2,\dots f_m)\in R^m\).
An element \(g=(g_1, g_2,\dots g_m)\in R^m\) is called a relation on \(f\) if
\[ g_1f_1+\dots + g_mf_m=0. \]
Let \(f^{\bot}\) denote the set of all relations on \(f\in R^m\). (Then \(f^{\bot}\) is an \(R\)-submodule of the \(R\)-module \(R^m\).)
The ring \(R\) is called coherent if for all \(m\in\mathbb N\) and all \(f\in R^m\), \(f^{\bot}\) is finitely generated, that is, there exists \(d\in\mathbb N\) and there exists \(g_j\in f^{\bot}\), \(j\in\{1,\dots, d\}\), such that for all \(g\in f^{\bot}\), there exist \(r_j\in R\), \(j\in\{1,\dots, d\}\), such that \(g=r_1g_1+\dots + r_dg_d.\)
Let \(\mathbb C_{\geq 0}=\{s\in\mathbb C: \operatorname{Re}(s)\geq 0\}\) and let \({\mathcal W}^{+}\) denote the Banach algebra of those functions \(f:\mathbb C_{\geq 0}\to \mathbb C\) such that
\[ f(s)=\widehat{f_a}(s)+\sum_{k=0}^\infty f_ke^{-st_k}, \quad s\in \mathbb C_{\geq 0}, \]
where \(f_a: (0,\infty)\to\mathbb C\), \(f_a\in L^1(0,\infty)\), for all \(k\in\mathbb N\), \(f_k\in\mathbb C\), \(\{f_k\}_{k=0}^\infty\in l^1\), for all \(k\in\mathbb N\), \(t_k\in\mathbb C\), \(0= t_0<t_1<t_2<\dots\), equipped with the pointwise operations and the norm
\[ \|f\|_{\mathcal W}^{+}= \|f_a\|_{L^1}+\|\{f_k\}_{k=0}^\infty\|_{l^1}. \]
Here, \(\widehat{f_a}\) denotes the Laplace transform of \(f_a\), given by
\[ \widehat{f_a}(s)=\int_0^\infty e^{-st}f_a(t)\,dt,\quad s\in\mathbb C_{\geq 0}. \]
In this paper, it is proved, using ideas of R. Mortini and M. von Renteln [J. Aust. Math. Soc., Ser. A 46, No. 2, 220–228 (1989; Zbl 0677.46039)], that the ring \({\mathcal W}^+\) is not coherent.


46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
30H05 Spaces of bounded analytic functions of one complex variable
13E99 Chain conditions, finiteness conditions in commutative ring theory


Zbl 0677.46039
Full Text: DOI EuDML


[1] S. Glaz, Commutative Coherent Rings, vol. 1371 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1989. · Zbl 0745.13004
[2] W. S. McVoy and L. A. Rubel, “Coherence of some rings of functions,” Journal of Functional Analysis, vol. 21, no. 1, pp. 76-87, 1976. · Zbl 0317.46049
[3] R. Mortini and M. von Renteln, “Ideals in the Wiener algebra W+,” Journal of the Australian Mathematical Society. Series A, vol. 46, no. 2, pp. 220-228, 1989. · Zbl 0677.46039
[4] F. M. Callier and C. A. Desoer, “An algebra of transfer functions for distributed linear time-invariant systems,” IEEE Transactions on Circuits and Systems, vol. 25, no. 9, pp. 651-662, 1978. · Zbl 0418.93037
[5] M. Vidyasagar, Control System Synthesis: A Factorization Approach, vol. 7 of MIT Press Series in Signal Processing, Optimization, and Control, MIT Press, Cambridge, Mass, USA, 1985. · Zbl 0655.93001
[6] A. Quadrat, “An introduction to internal stabilization of linear infinite dimensional systems,” Course Notes, École Internationale d/Automatique de Lille (02-06/09/02): Contrôle de systèmes à paramètres répartis: Théorie et Applications, 2002, http://www-sop.inria.fr/cafe/Alban.Quadrat/Pubs/Germany2.pdf.
[7] A. Quadrat, “The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. I. (Weakly) doubly coprime factorizations,” SIAM Journal on Control and Optimization, vol. 42, no. 1, pp. 266-299, 2003. · Zbl 1035.93017
[8] R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World Scientific, River Edge, NJ, USA, 2003. · Zbl 1029.46039
[9] A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York, NY, USA, 1969. · Zbl 0199.46103
[10] V. P. Havin, S. V. Hru\vs, and N. K. Nikol/skiĭ, Eds., Linear and Complex Analysis Problem Book, V. P. Havin, S. V. Hru\vs, and N. K. Nikol/skiĭ, Eds., vol. 1043 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1984.
[11] H. Matsumura, Commutative Ring Theory, vol. 8 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1989. · Zbl 0666.13002
[12] A. Quadrat, “On a generalization of the Youla-Ku\vcera parametrization. I. The fractional ideal approach to SISO systems,” Systems & Control Letters, vol. 50, no. 2, pp. 135-148, 2003. · Zbl 1157.93348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.