Li, Songxiao; Stević, Stevo Riemann–Stieltjes operators between mixed norm spaces. (English) Zbl 1159.47012 Indian J. Math. 50, No. 1, 177-188 (2008). In this paper, the authors study the boundedness and compactness of the Riemann–Stieltjes operators \[ T_g f(z)= \int^1_0 f(tz)\operatorname{Re} g(tz)\,{dt\over t} \] and \[ L_g f(z)= \int^1_0 \operatorname{Re}f(tz) g(tz)\,{dt\over t}, \]where \(g: B_1(0)\to \mathbb{C}\) is a holomorphic mapping and \(z\in B_1(0)\). The interest is in the mapping properties between different mixed norm spaces of holomorphic functions \(H_{p,q,\gamma}(B_1(0))\). Reviewer: Niels Jacob (Swansea) Cited in 25 Documents MSC: 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators 30H05 Spaces of bounded analytic functions of one complex variable 47G10 Integral operators Keywords:Stieltjes transform; Riemann-Stieltjes operators; Bloch space; mixed norm spaces; boundedness; compactness of operators PDF BibTeX XML Cite \textit{S. Li} and \textit{S. Stević}, Indian J. Math. 50, No. 1, 177--188 (2008; Zbl 1159.47012) OpenURL