Berti, Patrizia; Pratelli, Luca; Rigo, Pietro Trivial intersection of \(\sigma \)-fields and Gibbs sampling. (English) Zbl 1159.60007 Ann. Probab. 36, No. 6, 2215-2234 (2008). In this paper the attention focuses on necessary and sufficient conditions for \(\bar\mathcal A\bigcap\bar\mathcal B=\overline{\mathcal A\bigcap\mathcal B}\), where \(\mathcal A, \mathcal B\subset\mathcal F\) are sub \(\sigma\)-fields and \((\Omega,\mathcal F,\mathcal P)\) is a probability space. These conditions are then applied to the (two-component) Gibbs sampler. Suppose \(X\) and \(Y\) are the coordinate projections on \((\Omega, \mathcal F)=(\mathcal X\times\mathcal Y,\mathcal U\otimes\mathcal V)\) where \((\mathcal X,\mathcal U)\) and \((\mathcal Y,\mathcal V)\) are measurable spaces. Let \((X_n, Y_n)_{n\geq0}\) be the Gibbs chain for \(P\). Then, the SLLN holds for \((X_n, Y_n)\) if and only if \(\overline{\sigma(X)}\bigcap\overline{\sigma(Y)}=\mathcal N\), or equivalently if and only if \(P(X\in U)P(Y\in V)=0\) whenever \(U\in\mathcal U, V\in\mathcal V\) and \(P(U\times V)=P(U^c\times V^c)=0\). The latter condition is also equivalent to ergodicity of \((X_n, Y_n)\), on a certain subset \(S_0\subset\Omega\), in case \(\mathcal F=\mathcal U\otimes\mathcal V\) is countably generated and \(P\) absolutely continuous with respect to a product measure. Reviewer: Nicko G. Gamkrelidze (Moskva) Cited in 6 Documents MSC: 60A05 Axioms; other general questions in probability 60A10 Probabilistic measure theory 60J22 Computational methods in Markov chains 65C05 Monte Carlo methods Keywords:ergodicity; Gibbs sampler; iterated conditional expectation; Markov chain; strong law of large numbers PDF BibTeX XML Cite \textit{P. Berti} et al., Ann. Probab. 36, No. 6, 2215--2234 (2008; Zbl 1159.60007) Full Text: DOI arXiv OpenURL References: [1] Berti, P., Pratelli, L. and Rigo, P. (2007). Skorohod representation on a given probability space. Probab. Theory Related Fields 137 277-288. · Zbl 1106.60003 [2] Burkholder, D. L. and Chow, Y. S. (1961). Iterates of conditional expectation operators. Proc. Amer. Math. Soc. 12 490-495. JSTOR: · Zbl 0106.33201 [3] Burkholder, D. L. (1961). Sufficiency in the undominated case. Ann. Math. Statist. 32 1191-1200. · Zbl 0221.62003 [4] Burkholder, D. L. (1962). Successive conditional expectations of an integrable function. Ann. Math. Statist. 33 887-893. · Zbl 0128.12602 [5] Diaconis, P., Khare, K. and Saloff-Coste, L. (2008). Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci. 23 151-178. · Zbl 1327.62058 [6] Diaconis, P., Freedman, D., Khare, K. and Saloff-Coste, L. (2007). Stochastic alternating projections. Preprint, Dept. Statistics, Stanford Univ. Currently available at http://www-stat.stanford.edu/ cgates/PERSI/papers/altproject-2.pdf. · Zbl 1268.60098 [7] Jones, G. L. and Hobert, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334. · Zbl 1127.60309 [8] Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics . Springer, New York. · Zbl 0991.65001 [9] Meyn, S. P. and Tweedie, R. L. (1996). Markov Chains and Stochastic Stability . Springer, New York. · Zbl 0925.60001 [10] Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22 1701-1762. With discussion and a rejoinder by the author. · Zbl 0829.62080 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.