×

On asymptotics of exchangeable coalescents with multiple collisions. (English) Zbl 1159.60016

This paper studies an exchangeable coalescent \(\prod_n=(\prod_n(t),\; t\geq0)\) with multiple collisions (\(\lambda\) – coalescent). This is a càdlàg (right continuous with left limits) Markov process that starts at \(t=0\) with \(n\) particles and is driven by rates determined by a finite characteristic measure \(\nu(dx)=x^{-2}\lambda(dx)\). The main focus of this note is on weak asymptotic behaviour of the number of collisions \(x_n\) and the absorption time \(\tau_n=\inf\{t\geq0:\prod_n(t)=1\}\), as \(n\) tends to \(\infty\). The principal result is criterion describing all possible limit lows of properly normalised and centred \(X_n\), include normal, stable with index \(1\leq\alpha\leq2\) and Mittag–Leffler distributions. Another result provides sufficient conditions under which \(\tau_n\) possesses the same collection of limit laws.

MSC:

60G09 Exchangeability for stochastic processes
60C05 Combinatorial probability
60K05 Renewal theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bai, Z. D., Hwang, H. K. and Liang, W. Q. (1998). Normal approximations of the number of records in geometrically distributed random variables. Random Structures Algorithms 13 , 319–334. · Zbl 0961.60040 · doi:10.1002/(SICI)1098-2418(199810/12)13:3/4<319::AID-RSA7>3.0.CO;2-Y
[2] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small time properties of beta coalescents. Ann. Inst. H. Poincaré Prob. Statist. 44 , 214–238. · Zbl 1214.60034 · doi:10.1214/07-AIHP103
[3] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes . Cambridge University Press. · Zbl 1107.60002
[4] Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007). On the length distribution of external branches in coalescence trees: genetic diversity within species. Theoret. Pop. Biol. 72 , 245–252. · Zbl 1123.92024 · doi:10.1016/j.tpb.2007.05.003
[5] Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Prob. 18 , 997–1025. · Zbl 1141.60007 · doi:10.1214/07-AAP476
[6] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Process. Appl. 117 , 1404–1421. · Zbl 1129.60069 · doi:10.1016/j.spa.2007.01.011
[7] Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. To appear in Random Structures Algorithms .
[8] Freund, F. and Möhle, M. (2007). On the time back to the most recent common ancestor and the external branch length of the Bolthausen–Sznitman coalescent. Submitted. · Zbl 1203.60110
[9] Gnedin, A.V. (2004). The Bernoulli sieve. Bernoulli 10 , 79–96. · Zbl 1044.60005 · doi:10.3150/bj/1077544604
[10] Gnedin, A. and Pitman, J. (2005). Regenerative composition structures. Ann. Prob. 33 , 445–479. · Zbl 1070.60034 · doi:10.1214/009117904000000801
[11] Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in \(\Lambda\)-coalescents. Electron. J. Prob. 12 , 1547–1567. · Zbl 1190.60061
[12] Gnedin, A., Dong, R. and Pitman, J. (2007). Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Prob. 17 , 1172–1201. · Zbl 1147.60022 · doi:10.1214/105051607000000069
[13] Gnedin, A., Iksanov, A. and Roesler, U. (2008). Small parts in the Bernoulli sieve. Discrete Math. Theoret. Computer Sci. AI , 239–246. · Zbl 1357.60096
[14] Gnedin, A., Pitman, J. and Yor, M. (2006). Asymptotic laws for compositions derived from transformed subordinators. Ann. Prob. 34 , 468–492. · Zbl 1142.60327 · doi:10.1214/009117905000000639
[15] Gnedin, A., Pitman, J. and Yor, M. (2006). Asymptotic laws for regenerative compositions: gamma subordinators and the like. Prob. Theory Relat. Fields 135 , 576–602. · Zbl 1099.60023 · doi:10.1007/s00440-005-0473-0
[16] Gnedin, A., Iksanov, A., Negadajlov, P. and Roesler, U. (2008). The Bernoulli sieve revisited. Preprint. Available at http://arxiv.org/abs/0801.4725. · Zbl 1357.60096
[17] Goncharov, V. L. (1962). On the field of combinatorial analysis. Amer. Math. Soc. Trans. Ser. 2, 19 , 1–46. · Zbl 0129.31503
[18] Iksanov, A. and Möhle, M. (2008). On the number of jumps of random walks with a barrier. Adv. Appl. Prob. 40 , 206–228. · Zbl 1157.60041 · doi:10.1239/aap/1208358893
[19] Iksanov, A. and Terletsky, Yu. (2008). On asymptotic behavior of certain recursions with random indices of linear growth. Prob. Stat. Forum 1 , 62–67. · Zbl 1178.60020
[20] Iksanov, A., Marynych, A. and Möhle, M. (2007). On the number of collisions in beta(2,\(b\))-coalescents. Submitted. · Zbl 1208.60081
[21] Panholzer, A. (2004). Destruction of recursive trees. In Mathematics and Computer Science III, Birkhäuser, Basel, pp. 267–280. · Zbl 1060.05022
[22] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27 , 1870–1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[23] Pitman, J. (2006). Combinatorial Stochastic Processes (Lecture Notes Math. 1875 ). Springer, Berlin.
[24] Ross, S. M. (1982). A simple heuristic approach to simplex efficiency. Europ. J. Operat. Res. 9 , 344–346. · Zbl 0477.90037 · doi:10.1016/0377-2217(82)90177-1
[25] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 , 1116–1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.