Baryshnikov, Yu.; Penrose, Mathew D.; Yukich, J. E. Gaussian limits for generalized spacings. (English) Zbl 1159.60315 Ann. Appl. Probab. 19, No. 1, 158-185 (2009). Summary: Nearest neighbor cells in \(\mathbb{R}^d, d\in \mathbb N\), are used to define coefficients of divergence (\(\phi \)-divergences) between continuous multivariate samples. For large sample sizes, such distances are shown to be asymptotically normal with a variance depending on the underlying point density. In \(d=1\), this extends classical central limit theory for sum functions of spacings. The general results yield central limit theorems for logarithmic \(k\)-spacings, information gain, log-likelihood ratios and the number of pairs of sample points within a fixed distance of each other. Cited in 20 Documents MSC: 60F05 Central limit and other weak theorems 60D05 Geometric probability and stochastic geometry 62H11 Directional data; spatial statistics Keywords:\(\phi \)-divergence; central limit theorems; spacing statistics; logarithmic spacings; information gain; log-likelihood × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Ali, S. M. and Silvey, S. D. (1965). Association between random variables and the dispersion of a Radon-Nikodým derivative. J. Roy. Statist. Soc. Ser. B 27 100-107. · Zbl 0166.15102 [2] Ali, S. M. and Silvey, S. D. (1965). A further result on the relevance of the dispersion of a Radon-Nikodým derivative to the problem of measuring association. J. Roy. Statist. Soc. Ser. B 27 108-110. · Zbl 0166.15103 [3] Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 131-142. JSTOR: · Zbl 0203.19902 [4] Baryshnikov, Y., Penrose, M. and Yukich, J. E. (2008). Gaussian limits for generalized spacings (extended version). Available at http://arxiv.org./abs/0804.4123. · Zbl 1159.60315 · doi:10.1214/08-AAP537 [5] Baryshnikov, Y. and Yukich, J. E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 213-253. · Zbl 1068.60028 · doi:10.1214/105051604000000594 [6] Bickel, P. J. and Breiman, L. (1983). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 185-214. · Zbl 0502.62045 · doi:10.1214/aop/1176993668 [7] Blumenthal, S. (1968). Logarithms of sample spacings. SIAM J. Appl. Math. 16 1184-1191. JSTOR: · Zbl 0177.47203 · doi:10.1137/0116099 [8] Cressie, N. (1976). On the logarithms of high-order spacings. Biometrika 63 343-355. JSTOR: · Zbl 0331.62036 · doi:10.1093/biomet/63.2.343 [9] Csiszár, I. (1963). Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 85-108. · Zbl 0124.08703 [10] Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 299-318. · Zbl 0157.25802 [11] Csiszár, I. (1978). Information measures: A critical survey. In Transactions of the Seventh Prague Conference on Information Theory , Statistical Decision Functions and the Eighth European Meeting of Statisticians ( Tech. Univ. Prague , Prague , 1974 ) B 73-86. Academia, Prague. · Zbl 0401.94010 [12] Czekała, F. (1993). The asymptotic distributions of statistics based on logarithms of spacings. Zastos. Mat. 21 511-519. · Zbl 0805.62019 [13] Darling, D. A. (1953). On a class of problems related to the random division of an interval. Ann. Math. Statistics 24 239-253. · Zbl 0053.09902 · doi:10.1214/aoms/1177729030 [14] Deheuvels, P., Einmahl, J. H. J., Mason, D. M. and Ruymgaart, F. H. (1988). The almost sure behavior of maximal and minimal multivariate k n -spacings. J. Multivariate Anal. 24 155-176. · Zbl 0646.60035 · doi:10.1016/0047-259X(88)90109-1 [15] Dudewicz, E. J. and Van der Meulen, E. C. (1987). The empiric entropy, a new approach to nonparametric density estimation. In New Perspectives in Theoretical and Applied Statistics (M. I. Puri, J. Vilaplana and M. Wertz, eds.) 202-227. Wiley, New York. · Zbl 0631.62047 [16] L’Écuyer, P., Cordeau, J.-F. and Simard, R. (2000). Close-point spatial tests and their application to random number generators. Oper. Res. 48 308-317. JSTOR: · Zbl 1106.65301 · doi:10.1287/opre.48.2.308.12385 [17] Ekström, M. (2006). Sum-functions of spacings of increasing order. J. Statist. Plann. Inference 136 2535-2546. · Zbl 1090.62043 · doi:10.1016/j.jspi.2004.11.006 [18] Gebert, J. R. and Kale, B. K. (1969). Goodness of fit tests based on discriminatory information. Statist. Hefte. 3 192-200. · Zbl 0179.24102 [19] Ghosh, K. and Jammalamadaka, S. R. (2001). A general estimation method using spacings. J. Statist. Plann. Inference 93 71-82. · Zbl 0965.62019 · doi:10.1016/S0378-3758(00)00160-9 [20] Hall, P. (1986). On powerful distributional tests based on sample spacings. J. Multivariate Anal. 19 201-224. · Zbl 0605.62038 · doi:10.1016/0047-259X(86)90027-8 [21] Holst, L. (1979). Asymptotic normality of sum-functions of spacings. Ann. Probab. 7 1066-1072. · Zbl 0421.60017 · doi:10.1214/aop/1176994901 [22] Holst, L. and Rao, J. S. (1981). Asymptotic spacings theory with applications to the two-sample problem. Canad. J. Statist. 9 79-89. JSTOR: · Zbl 0477.62028 · doi:10.2307/3315298 [23] Jammalamadaka, S. R. and Zhou, X. (1990). Some goodness of fit tests in higher dimensions based on interpoint distances. In Proceedings of the R. C. Bose Symposium on Probability , Statistics and Design of Experiments (R. R. Bahadur, ed.) 391-404. Wiley Eastern, New Delhi. [24] Jiménez, R. and Yukich, J. E. (2002). Asymptotics for statistical distances based on Voronoi tessellations. J. Theoret. Probab. 15 503-541. · Zbl 1011.62021 · doi:10.1023/A:1014819112010 [25] Jiménez, R. and Yukich, J. E. (2005). Statistical distances based on Euclidean graphs. In Recent Advances in Applied Probability (R. Baeza-Yates et al., eds.) 223-239. Springer, New York. · Zbl 1063.62077 [26] Khashimov, S. A. (1989). Asymptotic properties of functions of spacings. Theory Probab. Appl. 34 298-306. · Zbl 0693.62020 · doi:10.1137/1134025 [27] Kuo, M. and Rao, J. S. (1984). Limit theory and efficiencies for tests based on higher-order spacings. In Statistics : Applications and New Directions ( Calcutta , 1981 ) 333-352. Indian Statist. Inst., Calcutta. [28] Mirakhmedov, S. A. (2005). Lower estimation of the remainder term in the CLT for a sum of the functions of k -spacings. Statist. Probab. Lett. 73 411-424. · Zbl 1085.60015 · doi:10.1016/j.spl.2005.04.016 [29] Moran, P. A. P. (1947). The random division of an interval. Suppl. J. Roy. Statist. Soc. 9 92-98. · Zbl 0031.06004 · doi:10.2307/2983572 [30] Penrose, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5 . Oxford Univ. Press, Oxford. · Zbl 1029.60007 · doi:10.1093/acprof:oso/9780198506263.001.0001 [31] Penrose, M. D. (2007). Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13 1124-1150. · Zbl 1143.60013 · doi:10.3150/07-BEJ5167 [32] Penrose, M. D. (2007). Gaussian limits for random geometric measures. Electron. J. Probab. 12 989-1035 (electronic). · Zbl 1153.60015 [33] Penrose, M. D. and Yukich, J. E. (2005). Normal approximation in geometric probability. In Stein’s Method and Applications. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5 37-58. Singapore Univ. Press, Singapore. · doi:10.1142/9789812567673_0003 [34] del Pino, G. E. (1979). On the asymptotic distribution of k -spacings with applications to goodness-of-fit tests. Ann. Statist. 7 1058-1065. · Zbl 0425.62026 · doi:10.1214/aos/1176344789 [35] Pyke, R. (1965). Spacings. J. Roy. Statist. Soc. Ser. B 27 395-449. JSTOR: · Zbl 0144.41704 [36] Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-fit Statistics for Discrete Multivariate Data . Springer, New York. · Zbl 0663.62065 [37] Rényi, A. (1961). On measures of entropy and information. In Proc. 4th Berkeley Sympos. Math. Statist. Probab. I 547-561. Univ. California Press, Berkeley. · Zbl 0106.33001 [38] Schilling, M. F. (1983). Goodness of fit testing in R m based on the weighted empirical distribution of certain nearest neighbor statistics. Ann. Statist. 11 1-12. · Zbl 0518.62041 · doi:10.1214/aos/1176346051 [39] Shao, Y. and Jiménez, R. (1998). Entropy for random partitions and its applications. J. Theoret. Probab. 11 417-433. · Zbl 0931.62004 · doi:10.1023/A:1022683822547 [40] Shao, Y. and Hahn, M. G. (1995). Limit theorems for the logarithm of sample spacings. Statist. Probab. Lett. 24 121-132. · Zbl 0828.60021 · doi:10.1016/0167-7152(94)00156-3 [41] van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings. Scand. J. Statist. 19 61-72. · Zbl 0760.62034 [42] Weiss, L. (1957). The asymptotic power of certain tests of fit based on sample spacings. Ann. Math. Statist. 28 783-786. · Zbl 0087.14801 · doi:10.1214/aoms/1177706892 [43] Zhou, S. and Jammalamadaka, S. R. (1993). Goodness of fit in multidimensions based on nearest neighbour distances. J. Nonparametr. Statist. 2 271-284. · Zbl 1360.62230 · doi:10.1080/10485259308832558 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.