×

Goodness-of-fit testing for exponential polynomial growth curves. (English) Zbl 1159.62011

Summary: A goodness-of-fit test is proposed for the family of exponential polynomial growth curve models [EPGCM; M. Heinen, Netherlands J. Agricult. Sci. 47, 67–89 (1999)], which has wide applications in different areas of science. The exponential growth curve model (EGCM), the most prominent member of the EPGCM family, is a simple and biologically meaningful growth model. Other members of the EPGCM family also cover many realistic growth processes. Thus, a goodness-of-fit test for the EPGCM class has substantial practical value. The goodness-of-fit test developed here is based on the properties of finite differences. The performance of the theory developed is illustrated through simulation and analysis of real data.

MSC:

62F03 Parametric hypothesis testing
62F05 Asymptotic properties of parametric tests
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akaike H., IEEE Trans. Automatic Contr. 19 pp 716– (1974) · Zbl 0314.62039
[2] Basu T. K., Aquaculture Res. 27 pp 891– (1996)
[3] Bhattacharya , S. ( 2003 ). Growth Curve Modelling and Optimality Search Incorporating Chronobiological and Directional Issues for an Indian Major CarpCirrhinus Mrigala. Ph.D. dissertation . Jadavpur University , Kolkata , India .
[4] Breslow N. E., J. Amer. Statist. Assoc. 88 pp 9– (1993) · Zbl 0775.62195
[5] Cameron A. C., J. Bus. Econ. Statist. 14 pp 209– (1996)
[6] Cameron A. C., J. Econometrics 77 pp 329– (1997) · Zbl 0877.62097
[7] Chinchilli V. M., Biometrics 52 pp 341– (1996) · Zbl 0876.62092
[8] Fieller B. A., Biometrika 24 pp 428– (1932)
[9] Ginzburg L. R., Ecological Orbits: How Planets Move and Populations Grow (2004)
[10] Gupta , A. , Bhattacharya , S. , Chattyopadhyay , A. ( 2006 ). Population Prediction and Related Inference Based on Relative Growth Rate Model . Technical Report, Department of Statistics, University of Calcutta, India .
[11] Hauspie R. C., Ann. Hum. Biol. 7 pp 347– (1980)
[12] Heinen M., Netherlands J. Agricult. Sci. 47 pp 67– (1999)
[13] Hill W., Biometrics 4 pp 192– (1968)
[14] Hinkley D. V., Biometrika 56 pp 635– (1969) · Zbl 0183.48101
[15] Laird N. M., Biometrics 38 pp 963– (1982) · Zbl 0512.62107
[16] Malthus T. R., An Essay on the Principle of Population (1798)
[17] Mandal , A. , Huang , W.T. , Bhandari , S. K. , Basu , A. ( 2008 ). Goodness-of-Fit Testing in Growth Curve Models: A General Approach Based on Finite Differences . Technical Report No. BIRU/2008/1 . Indian Statistical Institute , Kolkata , India . · Zbl 1284.62131
[18] McCullagh P., Generalized Linear Models., 2. ed. (1989) · Zbl 0744.62098
[19] Merrill A. S., Biometrika 20 pp 53– (1928)
[20] Pan Z., Biometrics 61 pp 1000– (2005) · Zbl 1087.62081
[21] Park R. E., J. Econometrics 13 pp 185– (1980) · Zbl 0432.62061
[22] Rao C. R., Advanced Statistical Methods in Biometric Research (1952) · Zbl 0047.38601
[23] Rao C. R., Biometrika 46 pp 49– (1959) · Zbl 0108.15405
[24] Rao C. R., Statist. Sci. 2 pp 434– (1987) · Zbl 0955.62551
[25] Royston P., J. Bus. Econ. Statist. 29 pp 2943– (2000)
[26] Schneiderman E. D., Amer. J. Phys. Anthropol. 67 pp 323– (1985)
[27] Schwarz G., Ann. Statist. 6 pp 461– (1978) · Zbl 0379.62005
[28] Tsoularis A., Mathemat. Biosci. 179 pp 21– (2002) · Zbl 0993.92028
[29] Williams , J. S. , Izenman , A. J. ( 1981 ). A Class of Linear Spectral Models and Analysis for the Study of Longitudinal Data . Technical Report, Department of Statistics, Colorado State University . · Zbl 0715.62177
[30] Vonesh E. S., Biometrics 52 pp 572– (1996) · Zbl 0875.62531
[31] Zheng B., Statist. Med. 19 pp 1265– (2000)
[32] Zotin A. I., Can. Bull. Fish. Aquat. Sci. 213 pp 27– (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.