zbMATH — the first resource for mathematics

Optimal recovery of linear functionals on sets of finite dimension. (English. Russian original) Zbl 1159.65018
Math. Notes 84, No. 4, 561-567 (2008); translation from Mat. Zametki 84, No. 4, 602-608 (2008).
Let \(X\) be a linear space of dimension \(n+1\) generated by \(f_0, f_1,\dots,f_n\). Let \(L_1,\dots,L_n\) be linear functionals linearly independent defined on \(X\) and \(L_0\neq L_i\), \(i=1,\dots,n\), another linear functional on \(X\). Let \(P=\{\sum^n_{i=0}a_if_i:a_i\in\mathbb R\), \(|a_i|\leq |\beta_i|\), \(i=0,\dots,n\}\), where \(\beta n=1\) and \((\beta_0,\dots,\beta n_1)\) is the solution of the system \(\sum^n_{i=0} \beta j\) \(L_jf_i=0\), \(j=1,\dots,n\). The author presents an algorithm that recovers the functional \(L_0\) on \(P\) with the least error among all linear algorithms using the information \((L_1f,\dots,L_nf)\).
65D15 Algorithms for approximation of functions
65D05 Numerical interpolation
65Y20 Complexity and performance of numerical algorithms
Full Text: DOI
[1] P.W. Gaffney and M. J. D. Powell, ”Optimal interpolation,” in Lecture Notes in Math., Vol. 506: Numerical Analysis, Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975 (Springer-Verlag, Berlin, 1976), pp. 90–99.
[2] P.W. Gaffney, Optimal Interpolation, Thesis (Oxford Univ. Press, Oxford, 1976).
[3] P.W. Gaffney, ”To compute the optimal interpolation formula,” Math. Comp. 32(143), 763–777 (1978). · Zbl 0393.65007 · doi:10.1090/S0025-5718-1978-0474698-2
[4] K. Yu. Osipenko, ”The optimal interpolation of the analytic functions,” Mat. Zametki 12(4), 465–476 (1972). · Zbl 0248.30033
[5] S. A. Smolyak, ”Interpolation and quadrature formulas for the classes S \(\alpha\) and E S \(\alpha\) ,” Dokl. Akad. Nauk SSSR 131(5), 1028–1031 (1960) [SovietMath. Dokl. 1, 384–387 (1960)].
[6] R. E. Barnhill and J. A. Wixom, ”An error analysis for interpolation on analytic functions,” SIAM J. Numer. Anal. 5(3), 522–529 (1968). · Zbl 0184.37901 · doi:10.1137/0705043
[7] N. S. Bakhvalov, ”Lower bounds for the asymptotic characteristics of classes of functions with dominant mixed derivative,” Mat. Zametki 12(6), 655–664 (1972).
[8] B. D. Boyanov, ”Best interpolation methods for certain classes of differentiable functions,” Mat. Zametki 17(4), 511–524 (1975).
[9] B.D. Bojanov and V.G. Chernogorov, ”An optimal interpolation formula,” J. Approx. Theory 20(3), 264–274 (1977). · Zbl 0349.41001 · doi:10.1016/0021-9045(77)90061-2
[10] V. L. Velikin, ”Optimal interpolation of periodic differentiable functions with bounded higher derivative,” Mat. Zametki 22(5), 663–670 (1977). · Zbl 0364.41003
[11] M. Golomb, ”Interpolation operators as optimal recovery schemes for classes of analytic functions,” in Optimal Estimation in Approximation Theory, Proc. Internat. Sympos., Freudenstadt, 1976 (Plenum Press, New York, 1977), pp. 93–138.
[12] N. M. Korobov, Number-Theoretic Methods in Approximate Analysis (Fizmatlit, Moscow, 1963) [in Russian]. · Zbl 0115.11703
[13] L. F. Meyers and A. Sard, ”Best interpolation formulas,” J. Math. Phys. 29, 198–206 (1950). · Zbl 0040.02801 · doi:10.1002/sapm1950291198
[14] A. A. Melkman, ”n-width and optimal interpolation of time-and band-limited functions,” in Optimal Estimation in Approximation Theory, Proc. Internat. Sympos., Freudenstadt, 1976 (Plenum Press, New York, 1977), pp. 55–68.
[15] K. Yu. Osipenko, ”Best approximation of analytic functions from information about their values at a finite number of points,” Mat. Zametki 19(1), 29–40 (1976) [Math. Notes 19 (1–2), 17–23 (1976)].
[16] K. Yu. Osipenko, ”On optimal recovery methods in Hardy-Sobolev spaces,” Mat. Sb. 192(2), 67–86 (2001) [Russian Acad. Sci. Sb.Math. 192 (2), 225–244 (2001)]. · Zbl 1017.41024 · doi:10.4213/sm543
[17] W. Forst, ”Optimale Hermite-Interpolation differenzierbaren periodischer Funktionen,” J. Approx. Theory 20(4), 333–347 (1977). · Zbl 0352.41005 · doi:10.1016/0021-9045(77)90079-X
[18] S. M. Nikol’skii, ”Concerning estimation for approximate quadrature formulas,” Uspekhi Mat. Nauk 5(2), 165–177 (1950).
[19] A. Sard, ”Best approximate integration formulas; best approximation formulas,” Amer. J. Math. 71(1), 80–91 (1949). · Zbl 0039.34104 · doi:10.2307/2372095
[20] J. F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms (Academic Press, New York-London, 1980; Mir, Moscow, 1983). · Zbl 0441.68046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.