zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a new iterative method for solving linear systems and comparison results. (English) Zbl 1159.65037
A new iterative method for solving linear systems, which can be considered as a modification of the Gauss-Seidel method, in conjunction with a projection method and imposing a Petrov-Galerkin condition, namely a two-dimensional double successive projection method, is proposed. Furthermore, the authors provide the theoretical analysis about the improved rate of convergence. Finally, numerical results, using MATLAB, for various examples are presented that are in agreement with the derived theoretical estimates demonstrating the efficiency and applicability of the proposed method.

65F10Iterative methods for linear systems
Full Text: DOI
[1] Benzi, M.; Joubert, W.; Van Duin, A.: Orderings for incomplete factorization preconditioning of nonsymmetric problems, SIAM J. Sci. comput. 20, 1652-1670 (1999) · Zbl 0940.65033 · doi:10.1137/S1064827597326845
[2] Benzi, M.; Szyld, D. B.; Mateescu, G.: Numerical experiments with parallel ordering for ILU preconditioners, Electron. trans. Numer. anal. 8, 88-114 (1999) · Zbl 0923.65012 · emis:journals/ETNA/vol.8.1999/pp88-114.dir/pp88-114.html
[3] Bj’&acute, A.; Orck; Elfving, T.: Accelerated projection methods for computing psedu-inverse solutions of systems of linear equations, Bit 19, 145-163 (1976) · Zbl 0409.65022
[4] Bloor, M. I. G.; Wilson, M. J.: Generating parametrization of wing geometries using partial differential equations, Comput. methods appl. Mech. engrg. 148, 125-138 (1997) · Zbl 0923.76069 · doi:10.1016/S0045-7825(97)00033-9
[5] Bramley, R.; Sameh, A.: Row projection methods for large nonsymmetric linear systems, SIAM J. Sci. statist. Comput. 13, 168-193 (1993) · Zbl 0752.65024 · doi:10.1137/0913010
[6] Brezinski, C.: Projection methods for systems of equations, (1997) · Zbl 0889.65023
[7] Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, Ric. sci. Progr. tecn. Econom. naz. 9, 326-333 (1938) · Zbl 64.1244.02
[8] Evans, D. J.: Direct methods of solution of partial differential equations with periodic boundary conditions, Math. comput. Simulation 21, 270-275 (1979) · Zbl 0418.65052 · doi:10.1016/0378-4754(79)90072-7
[9] Golub, G. H.; Vanderstraeten, D.: On the preconditioning of matrices with skew-symmetric splittings, Numer. algorithms 25, 223-239 (2000) · Zbl 0983.65041 · doi:10.1023/A:1016637813615
[10] R.A. Horn, C.R. Johnson, Matrix Analysis, Originally published by Cambridge University Press in 1986.
[11] Householder, A. S.: Theory of matrices in numerical analysis, (1964) · Zbl 0161.12101
[12] Kaczmarz, G. S.: Angenäherte auflösung von systemen linearer gleichngen, Bull. internal. Acad. Pol sci. Lett. A 35, 355-357 (1937) · Zbl 0017.31703
[13] Kamath, C.; Sameh, A.: A projection method for solving nonsymmetric linear systems on multiprocessors, Parallel comput. 9, 291-312 (1988 -- 89) · Zbl 0668.65028 · doi:10.1016/0167-8191(89)90114-2
[14] Krasnoselskii, M. A.: Approximate solutions of operator equations, (1972)
[15] Lopez, L.; Simoncini, V.: Analysis of projection methods for rational function approximation to the matrix exponential operator, SIAM J. Numer. anal. 44, 613-635 (2006) · Zbl 1158.65031 · doi:10.1137/05062590
[16] Saad, Y.: Preconditioning techniques for nonsymmetric and indefinite linear systems, J. comput. Appl. math. 24, 89-105 (1988) · Zbl 0662.65028 · doi:10.1016/0377-0427(88)90345-7
[17] Saad, Y.: Iterative methods for sparse linear systems, (1996) · Zbl 1031.65047
[18] Saad, Y.; Van Der Vorst, H. A.: Iterative solution of linear systems in the 20th century, J. comput. Appl. math. 43, 1155-1174 (2005)
[19] V. Simoncini, Variable accuracy of matrix-vector products in projection methods for eigencomputation. Technical Report, Universita` di Bologna, 2004; SIAM J. Numer. Anal. · Zbl 1093.65037 · doi:10.1137/040605333
[20] Tanabe, K.: Projection method for solving a singular system of linear equations and its applications, Numer. math. 17, 203-214 (1971) · Zbl 0228.65032 · doi:10.1007/BF01436376
[21] Ujević, N.: A new iterative method for solving linear systems, Appl. math. Comput. 179, 725-730 (2006) · Zbl 1102.65039 · doi:10.1016/j.amc.2005.11.128