Zhu, Chun-Gang; Wang, Ren-Hong Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation. (English) Zbl 1159.65087 Appl. Math. Comput. 208, No. 1, 260-272 (2009). Summary: A numerical solution of the Burgers’ equation is presented based on cubic B-spline quasi-interpolation. At first the cubic B-spline quasi-interpolation is introduced. Moreover, a numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. The accuracy of the proposed method is demonstrated by some test problems. The numerical results are found in good agreement with the exact solutions. The advantage of the resulting scheme is that the algorithm is very simple, so it is very easy to implement. Cited in 1 ReviewCited in 35 Documents MSC: 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:Burgers’ equation; B-spline; quasi-interpolation; second-order hyperbolic equation; numerical examples; numerical results; algorithm PDF BibTeX XML Cite \textit{C.-G. Zhu} and \textit{R.-H. Wang}, Appl. Math. Comput. 208, No. 1, 260--272 (2009; Zbl 1159.65087) Full Text: DOI References: [1] Bateman, H., Some recent researches on the motion of fluids, Monthly Weather Rev., 43, 163-170 (1915) [2] Inc, M., On numerical solution of Burgers, equation by homotopy analysis method, Phys. Lett. A, 372, 356-360 (2008) · Zbl 1217.76019 [3] Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1948) [4] Hopf, E., The partial differential equation \(U_t + UU_x - \nu U_{xx} = 0\), Commun. Pure Appl. Math., 3, 201-230 (1950) · Zbl 0039.10403 [5] Cole, J. D., On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9, 225-236 (1951) · Zbl 0043.09902 [6] Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Sanz-Serna, J. M., Product approximation for nonlinear problems in the finite element method, IMA J. Numer. Anal., 1, 253-266 (1981) · Zbl 0469.65072 [7] Herbst, B. M.; Schoombie, S. W.; Mitchell, A. R., A moving Petrov-Galerkin method for transport equations, Int. J. Numer. Methods Eng., 18, 1321-1336 (1982) · Zbl 0485.65093 [9] Christie, I.; Mitchell, A. R., Upwinding of high order Galerkin methods in conduction-convection problems, Int. J. Numer. Methods Eng., 12, 1764-1771 (1978) · Zbl 0391.65034 [10] Ali, A. H.A.; Gardner, L. R.T.; Gardner, G. A., A collocation method for Burgers’ equation using cubic B-splines, Comput. Methods Appl. Mech. Eng., 100, 325-337 (1992) · Zbl 0762.65072 [11] Dagˇ, İ.; Irk, D.; Saka, B., A numerical solution of the Burgers’ equation using cubic B-splines, Appl. Math. Comput., 163, 199-211 (2005) · Zbl 1060.65652 [12] Dagˇ, İ.; Saka, B.; Boz, A., B-spline Galerkin methods for numerical solutions of the Burgers’ equation, Appl. Math. Comput., 166, 506-522 (2005) · Zbl 1073.65099 [13] Ramadan, M. A.; El-Danaf, T. S.; Alaal, F., A numerical solution of the Burgers’ equation using septic B-splines, Chaos, Solitons Fract., 26, 795-804 (2005) · Zbl 1075.65127 [14] Saka, B.; Dagˇ, İ., Quartic B-spline collocation methods to the numerical solutions of the Burgers’ equation, Chaos, Solitons Fract., 32, 1125-1137 (2007) · Zbl 1130.65103 [15] Saka, B.; Dagˇ, İ., A numerical study of the Burgers’ equation, J. Franklin Inst., 345, 328C348 (2008) [16] Zaki, S. I., A quintic B-spline finite elements scheme for the KdVB equation, Comput. Methods Appl. Eng., 188, 121-134 (2000) · Zbl 0957.65088 [17] Hardy, R. L., Theory and applications of the multiquadric-biharmonic method, 20 years of discovery 1968-1988, Comput. Math. Appl., 19, 163-208 (1990) · Zbl 0692.65003 [18] Kansa, E. J., Multiquadricsa scattered data approximation scheme with applications to computational fluid dynamics I, Comput. Math. Appl., 19, 127-145 (1990) · Zbl 0692.76003 [19] Kansa, E. J., Multiquadricsa scattered data approximation scheme with applications to computational fluid dynamics II, Comput. Math. Appl., 19, 147-161 (1990) · Zbl 0850.76048 [20] Hon, Y. C.; Wu, Z., A quasi-interpolation method for solving ordinary differential equations, Int. J. Numer. Methods Eng., 48, 1187-1197 (2000) · Zbl 0962.65060 [21] Wu, Z., Dynamically knots setting in meshless method for solving time dependent propagations equation, Comput. Methods Appl. Mech. Eng., 193, 1221-1229 (2004) · Zbl 1060.76633 [22] Wu, Z., Dynamical knot and shape parameter setting for simulating shock wave by using multi-quadric quasi-interpolation, Eng. Anal. Bound. Elem., 29, 354-358 (2005) · Zbl 1182.76933 [23] Chen, R.; Wu, Z., Solving partial differential equation by using multiquadric quasi-interpolation, Appl. Math. Comput., 186, 1502-1510 (2007) · Zbl 1117.65134 [24] Hon, Y. C.; Mao, X. Z., An efficient numerical scheme for Burgers’ equation, Appl. Math. Comput., 95, 37-50 (1998) · Zbl 0943.65101 [25] Chen, R.; Wu, Z., Applying multiquadric quasi-interpolation to solve Burgers’ equation, Appl. Math. Comput., 172, 472-484 (2006) · Zbl 1088.65086 [26] Farin, G., Curves and Surfaces for CAGD (2001), Morgan Kaufmann: Morgan Kaufmann San Francisco [28] Sablonnière, P., Univariate spline quasi-interpolants and applications to numerical analysis, Rend. Sem. Mat. Univ. Pol. Torino, 63, 211-222 (2005) · Zbl 1115.41009 [29] Nguyen, H.; Reynen, J., A space time finite element approach to Burgers’s equation, (Hinton, E.; etal., Numerical Methods for Non-linear Problems, vol. 3 (1987), Pineridge Press), 718-728 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.