×

A space-time discontinuous Galerkin finite element method for fully coupled linear thermo-elasto-dynamic problems with strain and heat flux discontinuities. (English) Zbl 1159.74427

Summary: A discontinuous Galerkin finite element method for the solution of linear thermo-elasto-dynamic problems is proposed and its unconditional stability without any restrictions on the grid structure is proven. Applications to space-time problems with discontinuous data are demonstrated.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F05 Thermal effects in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

deal.ii
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abedi, R.; Petracovici, B.; Haber, R.B., A space – time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance, Comput. methods appl. mech. engrg., 195, 25-28, 3247-3273, (2006) · Zbl 1130.74044
[2] Abeyaratne, R.; Knowles, J.K., On the driving traction acting on a surface of strain discontinuity in a continuum, J. mech. phys. solids, 38, 3, 345-360, (1990) · Zbl 0713.73030
[3] Abeyaratne, R.; Knowles, J.K., A continuum model of a thermo-elastic solid capable of undergoing phase transitions, J. mech. phys. solids, 41, 3, 541-571, (1993) · Zbl 0825.73058
[4] Abeyaratne, R.; Knowles, J.K., Dynamics of propagating phase boundaries: thermo-elastic solids with heat conduction, Arch. rational mech. anal., 126, 203-230, (1994) · Zbl 0806.73004
[5] Aubry, D.; Lucas, D.; Tie, B., Adaptive strategy for transient/coupled problems—applications to thermo-elasticity and elastodynamics, Comput. methods appl. mech. engrg., 176, 1-4, 41-50, (1999) · Zbl 0947.74059
[6] Bailey, P.B.; Chen, P.J., Thermodynamic influences on one-dimensional shock-waves and induced discontinuities in thermo-elastic bodies and 2nd-order effects, Int. J. solids struct., 22, 5, 485-495, (1986) · Zbl 0587.73009
[7] W. Bangerth, R. Hartmann, G. Kanschat, deal.II Differential Equations Analysis Library—Technical Reference, 1998-2006. <http://www.dealii.org>.
[8] Brezzi, F.; Cockburn, B.; Marini, L.D.; Süli, E., Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. methods appl. mech. engrg., 195, 25-28, 3293-3310, (2006) · Zbl 1125.65102
[9] Carlson, D.E., Linear thermo-elasticity, (), 297-345
[10] Chessa, J.; Belytschko, T., A local space – time discontinuous finite element method, Comput. methods appl. mech. engrg., 195, 13-16, 1325-1343, (2006) · Zbl 1122.76052
[11] ()
[12] Costanzo, F.; Huang, H., Proof of unconditional stability for a single-field discontinuous Galerkin finite element formulation for linear elasto-dynamics, Comput. methods appl. mech. engrg., 194, 18-20, 2059-2076, (2005) · Zbl 1095.74032
[13] Ekevid, T.; Li, M.X.D.; Wiberg, N.E., Adaptive FEA of wave propagation induced by high-speed trains, Comput. struct., 79, 29-30, 2693-2704, (2001)
[14] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Computational differential equations, (1996), Cambridge University Press Cambridge
[15] Gurtin, M.E., An introduction to continuum mechanics, Mathematics in science and engineering, vol. 158, (1981), Academic Press San Diego · Zbl 0559.73001
[16] Gurtin, M.E., The nature of configurational forces, Arch. rational mech. anal., 131, 67-100, (1995) · Zbl 0836.73002
[17] Huang, H.; Costanzo, F., On the use of space – time finite elements in the solution of elasto-dynamic problems with strain discontinuities, Comput. methods appl. mech. engrg., 191, 46, 5315-5343, (2002) · Zbl 1083.74587
[18] Hughes, T.J.R.; Hulbert, G.M., Space – time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 3, 339-363, (1988) · Zbl 0616.73063
[19] Hulbert, G.M., Discontinuity-capturing operators for elastodynamics, Comput. methods appl. mech. engrg., 96, 3, 409-426, (1992) · Zbl 0764.73084
[20] Hulbert, G.M.; Hughes, T.J.R., Space – time finite element methods for second-order hyperbolic equations, Comput. methods appl. mech. engrg., 84, 3, 327-348, (1990) · Zbl 0754.73085
[21] Jiang, S.; Racke, R., Evolution equations in thermo-elasticity, vol. 112, (2000), Chapman & Hall/CRC Boca Raton
[22] Johnson, C., Discontinuous Galerkin finite element methods for second-order hyperbolic problems, Comput. methods appl. mech. engrg., 107, 1-2, 117-129, (1993) · Zbl 0787.65070
[23] Larsson, F.; Hansbo, P.; Runesson, K., Space – time finite elements and an adaptive strategy for the coupled thermo-elasticity problem, Int. J. numer. methods engrg., 56, 2, 261-293, (2003) · Zbl 1116.74430
[24] Lee, T.W.; Sim, W.J., Efficient time-domain finite-element analysis for dynamic coupled thermo-elasticity, Comput. struct., 45, 4, 785-793, (1992) · Zbl 0775.73297
[25] Li, X.D.; Wiberg, N.E., Structural dynamic analysis by a time-discontinuous Galerkin finite element method, Int. J. numer. methods eng., 39, 12, 2131-2152, (1996) · Zbl 0885.73081
[26] Monk, P.; Richter, G.R., A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. sci. comput., 22, 1, 443-477, (2005) · Zbl 1082.65099
[27] Wiberg, N.E.; Li, X.D., Adaptive finite element procedures for linear and non-linear dynamics, Int. J. numer. methods engrg., 46, 10, 1781-1802, (1999) · Zbl 0977.74069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.