zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of a delayed SIR model with nonlinear incidence rate. (English) Zbl 1159.92037
Summary: An SIR epidemic model with incubation time and saturated incidence rate is formulated, where the susceptibles are assumed to satisfy the logistic equation and the incidence term is of saturated form with the susceptible. The threshold value $\Re _{0}$ determining whether the disease dies out is found. The results obtained show that the global dynamics are completely determined by the values of the threshold value $\Re _{0}$ and the time delay (i.e., incubation time length). If $\Re _{0}$ is less than one, the disease-free equilibrium is globally asymptotically stable and the disease always dies out, while if it exceeds one it will be endemic. By using the time delay as a bifurcation parameter, the local stability for the endemic equilibrium is investigated, and the conditions with respect to the system to be absolutely stable and conditionally stable are derived. Numerical results demonstrate that the system with time delay exhibits rich complex dynamics, such as quasiperiodic and chaotic patterns.

34K60Qualitative investigation and simulation of models
34K20Stability theory of functional-differential equations
34D23Global stability of ODE
34D05Asymptotic stability of ODE
Full Text: DOI EuDML