×

Interpolatory projection methods for structure-preserving model reduction. (English) Zbl 1159.93317

Summary: We present a framework for interpolatory model reduction that treats systems having a generalized coprime factorization \(\mathcal C(s)\mathcal K(s)^{-1}\mathcal B(s)+\mathcal D\). This includes rational Krylov-based interpolation methods as a special case. The broader framework allows retention of special structure in reduced models such as symmetry, second- and higher order structure, state constraints, internal delays, and infinite dimensional subsystems. Two numerical examples are provided for systems associated with viscoelastic dynamics and with an internal state delay that demonstrate the effectiveness and flexibility of the approach.

MSC:

93B11 System structure simplification
93C23 Control/observation systems governed by functional-differential equations
93C05 Linear systems in control theory

Software:

SUGAR
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] E.J. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. Thesis, ECE Dept., U. of Illinois, Urbana-Champaign, 1997; E.J. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. Thesis, ECE Dept., U. of Illinois, Urbana-Champaign, 1997
[2] De Villemagne, C.; Skelton, R., Model reduction using a projection formulation, Int. J. Control, 40, 2141-2169 (1987)
[3] Antoulas, A. C., Advances in Design and Control, Draft (2004), SIAM: SIAM Philadelphia
[4] Gallivan, K.; Grimme, G.; Van Dooren, P., A rational Lanczos algorithm for model reduction, Numer. Algorithms, 1, 12, 33-63 (1996) · Zbl 0870.65053
[5] Gallivan, K.; Vandendorpe, A.; Van Dooren, P., Model reduction of MIMO systems via tangential interpolation, SIAM J. Matrix Anal. Appl., 26, 2, 328-349 (2004) · Zbl 1078.41016
[6] Gugercin, S.; Antoulas, A. C.; Beattie, C. A., \(H_2\) model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30, 2, 609-638 (2008) · Zbl 1159.93318
[7] Yousouff, A.; Wagie, D. A.; Skelton, R. E., Linear system approximation via covariance equivalent realizations, J. Math. Anal. Appl., 196, 91-115 (1985) · Zbl 0573.93073
[8] Leitman, M. J.; Fisher, G. M.C., The linear theory of viscoelasticity, Handbuch Phy., 6, 10-31 (1973)
[9] Riviere, B.; Shaw, S.; Whiteman, J. R., Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems, Numer. Methods Partial Differential Equations, 23, 5, 1149-1166 (2007) · Zbl 1127.74045
[10] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheology, 27, 201-210 (1983) · Zbl 0515.76012
[11] Craig, R. R., Structural Dynamics: An Introduction to Computer Methods (1981), John Wiley & Sons
[12] Preumont, A., Vibration Control of Active Structures (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1273.74002
[13] Z. Bai, D. Bindel, J. Clark, J. Demmel, K.S.J. Pister, N. Zhou, New numerical techniques and tools in SUGAR for 3D MEMS simulation, in: Technical Proceedings of the Fourth International Conference on Modeling and Simulation of Microsystems, 2000, pp. 31-34; Z. Bai, D. Bindel, J. Clark, J. Demmel, K.S.J. Pister, N. Zhou, New numerical techniques and tools in SUGAR for 3D MEMS simulation, in: Technical Proceedings of the Fourth International Conference on Modeling and Simulation of Microsystems, 2000, pp. 31-34
[14] Weaver, W.; Johnston, P., Structural Dynamics by Finite Elements (1987), Prentice Hall, Upper Saddle River
[15] Chahlaoui, Y.; Gallivan, K. A.; Vandendorpe, A.; Van Dooren, P., Model reduction of second-order systems, (Benner, P.; Golub, G.; Mehrmann, V.; Sorensen, D., Dimension Reduction of Large-Scale Systems. Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45 (2005), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, Germany) · Zbl 1079.65531
[16] Korvink, J. G.; Rudyni, E. B., (Benner, P.; Golub, G.; Mehrmann, V.; Sorensen, D., Dimension Reduction of Large-Scale Systems. Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45 (2005), Springer-Verlag: Springer-Verlag Berlin, Heidelberg)
[17] Bai, Z., Krylov subspace techniques for reduced modeling of large-scale dynamical systems, Appl. Numer. Math., 43, 9-44 (2002) · Zbl 1012.65136
[18] Bai, Z.; Su, Y., Dimension reduction of large-scale second order dynamical systems via a second-order Arnoldi method, SIAM J. Sci. Comput., 26, 5, 1692-1709 (2005) · Zbl 1078.65058
[19] Mayo, A. J.; Antoulas, A. C., A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425, 2-3, 634-662 (2007) · Zbl 1118.93029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.