Dynamics of numbers and physics of oscillators. (Dynamique des nombres et physique des oscillateurs.) (French. English summary) Zbl 1159.94400

Summary: We consider the superheterodyning system discovered by Armstrong and Schottky in 1924. This system is the basic piece of any communication system. We prove that the frequency spectrum of this system is governed by arithmetical rule. We provide a number theoritical framework which allows us to predict all the particular features of the experimental frequency spectrum. We also introduce a new natural dynamical system on numbers and study its first properties.


94C05 Analytic circuit theory
11A55 Continued fractions
11Z05 Miscellaneous applications of number theory
82B05 Classical equilibrium statistical mechanics (general)
37A99 Ergodic theory
37N99 Applications of dynamical systems
Full Text: DOI EuDML


[1] J. Cresson, J-N. Dénarié, Geometry and dynamics of number under finite resolution. Noise, oscillators and algebraic randomness, Planat ed., Lect. Notes in Physics 550, 305-323. Springer, Berlin, 2000. · Zbl 1019.37004
[2] S. Dos Santos, Étude non linéaire et arithmétique de la synchronisation des systèmes : applications aux fluctuations de basse fréquence des oscillateurs ultra-stables. Thèse, Univ. Franche-Comté, 1998.
[3] G. Hardy, E. Wright, An introduction to the theory of number. Oxford University Press, Amen House, London, 1965. · Zbl 0020.29201
[4] A.Y. Khintchine, Continued fractions. P. Noordhoff Ltd, Groningen, 1963. · Zbl 0117.28503
[5] T. H. Lee, The design of CMOS radio-frequency integrated circuits. Cambridge University Press, 1998.
[6] J-P. Marillet, Arithmétique de la détection de phase électronique. Rapport de stage, IUT Belfort-Motbeliard, 2000.
[7] M. Planat, \(1/f\) frequency noise in a communication receiver and the Riemann hypothesis. Noise, oscillators and algebraic randomness, Planat ed., Lect. Notes in Physics 550. Springer, Berlin, 2000. · Zbl 1112.94300
[8] M. Planat, S. Dos Santos, N. Ratier, J. Cresson, S. Perrine, Close to resonance interaction of radiofrequency wawes in a Schottky diode mixer :\( 1/f\) noise and number theory. Quantum noise and other low frequency fluctuations in electronic devices, 177-187, P. Handel, A. Chung Eds, AIP Press, 1999.
[9] M. Planat, S. Dos Santos, J. Cresson, S. Perrine, \(1/f\) frequency noise in a communication receiver and the Riemann hypothesis. ICNF \(1999, 15^e\) International Conference on Noise in Physical systems and \(1/f\) fluctuations, 1999.
[10] M. Planat, J-P. Marillet, J. Cresson, Electronics of receivers and number theory. Poster, section Mathematical Physics, Third European Congress of Mathematics 2000, Barcelona.
[11] J-P. Serre, A course in arithmetic. Graduate Text in Mathematics 7. Springer-Verlag, 1973. · Zbl 0256.12001
[12] J-P. Serre, Arbres, Amalgames \(, SL_2\). Astérisque, 1972. · Zbl 0369.20013
[13] J. Smith, Modern communications circuits - 2nd ed., 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.