Moon, Hyunsuk; Taguchi, Yuichiro \(\ell\)-adic properties of certain modular forms. (English) Zbl 1160.11022 Proc. Japan Acad., Ser. A 82, No. 7, 83-86 (2006). The authors prove that Hecke-operators on certain spaces of \(\ell\)-adic modular forms (with \(\ell\in \{3,5,7\}\)) are topologically nilpotent. They then derive some arithmetic consequences of this result. Reviewer: Stefan Kühnlein (Karlsruhe) MSC: 11F33 Congruences for modular and \(p\)-adic modular forms 11F25 Hecke-Petersson operators, differential operators (one variable) 11F80 Galois representations 11S15 Ramification and extension theory Keywords:modular forms; Hecke-operators; mod \(\ell\) Galois representations; Serre’s \(\varepsilon\)-conjecture × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] A. O. L. Atkin and J. Lehner, Hecke operators on \(\Gamma_0(m)\), Math. Ann. 185 (1970), 134-160. · Zbl 0177.34901 · doi:10.1007/BF01359701 [2] A. N. Andrianov and V. G. Zhuravlev, Modular forms and Hecke Operators, Math. Monographs vol.145, A.M.S., Providence, 1995. · Zbl 0838.11032 [3] H. Carayol, Sur les représentations galoisiennes modulo \(\ell\) attachées aux formes modulaires, Duke Math. J. 59 (1989), 785-801. · Zbl 0703.11027 · doi:10.1215/S0012-7094-89-05937-1 [4] P. Deligne, Formes modulaires et représentations \(\ell\)-adiques, Séminaire Bourbaki, 1968/69, Exp. 355, Lect. Notes in Math. 179 , Springer-Verlag, 1971. · Zbl 0206.49901 [5] B. Edixhoven, Serre’s conjecture, in Modular forms and Fermat’s last theorem , ( Boston , MA , 1995), 209-242, Springer, New York. · Zbl 0918.11023 · doi:10.1007/978-1-4612-1974-3_7 [6] B. Edixhoven, The weight in Serre’s conjectures on modular forms, Invent. Math. 109 (1992), no.3, 563-594. · Zbl 0777.11013 · doi:10.1007/BF01232041 [7] N. Katz, \(p\)-adic properties of modular schemes and modular forms, in Modular functions of one variable , III ( Proc. Internat. Summer School, Univ. Antwerp, Antwerp , 1972), 69-190, Lecture Notes in Math., 350, Springer, Berlin, 1973. · Zbl 0271.10033 · doi:10.1007/978-3-540-37802-0_3 [8] R. Livné, On the conductors of mod \(\ell\) Galois representations coming from modular forms, J. Number Theory 31 (1989), 133-141. · Zbl 0674.10024 · doi:10.1016/0022-314X(89)90015-2 [9] T. Miyake, Modular Forms , Springer-Verlag, New York, 1989. · Zbl 0701.11014 [10] K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and \(q\)-series , A.M.S., Providence, 2004. · Zbl 1119.11026 [11] K. Ono and Y. Taguchi, \(2\)-adic properties of certain modular forms and their applications to arithmetic functions, Int. J. Number Theory 1 (2005), 75-101. · Zbl 1084.11014 · doi:10.1142/S1793042105000066 [12] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, L’Enseignement Math. 22 (1976), 227-260. · Zbl 0355.10021 [13] J.-P. Serre, Sur les représentations modulaires de degré \(2\) de Gal (\(\mathbf{\overline{Q}}/\mathbf{Q}\)), Duke Math. J. 54 (1987), 179-230. · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.