zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The impact of media on the control of infectious diseases. (English) Zbl 1160.34045
This paper uses a compartmental model to address the impact of media coverage on the transmission of infectious diseases. The mathematical model is a variant of the standard SIE model governed by ODEs in which the usual $SI$ term is multiplied by a factor $\mu e^{-mI}$ which decreases exponentially in $I$ and the parameter $m$ reflects the impact of media coverage to the contact transmission. The studies reveals that the model has a disease free equilibrium which is globally asymptotically stable if the basic reproduction number $R_0$ is less than the unity. Conversely, if $R_0>1$, then a unique endemic equilibrium appears and a Hopf bifurcation can occur which leads to oscillatory phenomena. Numerical studies show that, if $R_0>1$ and the effect of the media coverage is sufficiently strong, the model exhibits multiple positive equilibria which gives rise to challenge to the prediction and control of the outbreaks of infectious diseases.

34C60Qualitative investigation and simulation of models (ODE)
34C23Bifurcation (ODE)
34C05Location of integral curves, singular points, limit cycles (ODE)
Full Text: DOI
[1] Brauer F., Castillo-Chavez C.(2000). Mathematical Models in Population Biology and Epidemics. Springer-Verlag, New York · Zbl 1302.92001
[2] Busenberg S., Cooke K.(1993). Vertically Transmitted Diseases. Springer-Verlag, New York · Zbl 0837.92021
[3] Capasso V.(1993). Mathematical Structure of Epidemic System, Lecture Note in Biomathematics, Vol. 97. Springer, Berlin · Zbl 0798.92024
[4] Capasso V., Serio G. (1978). A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42: 43 · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[5] Diekmann O., Heesterbeek J.A.P.(2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York · Zbl 0997.92505
[6] Dumortier F., Roussarie R., Sotomayor J.(1987). Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3. Ergodic Theory Dynamical Systems 7(3): 375--413 · Zbl 0608.58034
[7] Health Canada: http://www.hc-sc.gc.ca/pphb-dgspsp/sars-sras/prof-e.html
[8] Hethcote H.W.(2000). The mathematics of infectious diseases. SIAM Revi. 42, 599--653 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[9] Levin S.A., Hallam T.G., Gross L.J. (1989). Applied Mathematical Ecology. Springer, New York · Zbl 0688.92015
[10] Liu W.M., Hethcote H.W., Levin S.A.(1987). Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25: 359 · Zbl 0621.92014 · doi:10.1007/BF00277162
[11] Liu W.M., Levin S.A., Iwasa Y.(1986). Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23: 187 · Zbl 0582.92023 · doi:10.1007/BF00276956
[12] Liu, R., Wu, J., and Zhu, H. (2005). Media/Psychological Impact on Multiple Outbreaks of Emerging Infectious Diseases, preprint · Zbl 1121.92060
[13] Murray J.D. (1998). Mathematical Biology. Springer-Verlag, Berlin · Zbl 0704.92001
[14] Ruan S., Wang W.(2003). Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Diff. Equs. 188: 135 · Zbl 1028.34046 · doi:10.1016/S0022-0396(02)00089-X
[15] SARS EXPRESS: http://www.syhao.com/sars/20030623.htm
[16] Shen Z. et al. (2004). Superspreading SARS events, Beijing, 2003. Emerg. Infect. Dis. 10(2): 256--260
[17] van den Driessche P., Watmough J.(2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180: 29--48 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[18] Wang W., Ruan S.(2004). Simulating SARS outbreak in Beijing with limit data. J. Theor. Biol. 227: 369 · doi:10.1016/j.jtbi.2003.11.014
[19] WHO. Epidemic curves: Serve Acute Respiratory Syndrome (SARS) http://www.who.int/csr/sars/epicurve/epiindex/en/print.html
[20] Yorke J.A., London W.P.(1973). Recurrent outbreaks of measles, chickenpox and mumps II. Am. J. Epidemiol. 98: 469
[21] Zhu H., Campbell S.A., Wolkowicz G.S.(2002). Bifurcation analysis of a predator-prey system with nonmonotonic function response. SIAM J. Appl. Math. 63(2): 636--682 · Zbl 1036.34049