zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytic solutions to a class of nonlinear infinite-delay-differential equations. (English) Zbl 1160.34059
The analytic solutions of the infinite delay differential equation with proportional delay $$ u'(x)=g(x,u(x),u(px)),\quad u(0)=\eta,\quad (p\in (0,\,1)) $$ are studied, based on the characteristics of the reproducing kernel space $W_2[0,\infty]$.

34K05General theory of functional-differential equations
Full Text: DOI
[1] Bellen, A.: Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay, IMA J. Numer. anal. 22, 529-536 (2002) · Zbl 1031.65089 · doi:10.1093/imanum/22.4.529
[2] Brunner, H.; Hu, Q.; Lin, Q.: Geometric meshes in collocation methods for Volterra integral equations with proportional delays, IMA J. Numer. anal. 21, 783-798 (2001) · Zbl 1014.65143 · doi:10.1093/imanum/21.4.783
[3] Ishiwata, E.: On the attainable order of collocation methods for the neutral functional -- differential equations with proportional delays, Computing 64, 207-222 (2000) · Zbl 0955.65098 · doi:10.1007/s006070050044
[4] Takama, N.; Muroya, Y.; Ishiwata, E.: On the attainable order of collocation methods for the delay differential equations with proportional delay, Bit 40, 374-394 (2000) · Zbl 0965.65101 · doi:10.1023/A:1022351309662
[5] Ishiwata, E.; Muroya, Y.: Rational approximation method for delay differential equations with proportional delay, Appl. math. Comput. 187, 741-747 (2007) · Zbl 1117.65105 · doi:10.1016/j.amc.2006.08.086
[6] Muroya, Y.; Ishiwata, E.; Brunner, H.: On the attainable order of collocation methods for pantograph integro-differential equations, J. comput. Appl. math. 152, 347-366 (2003) · Zbl 1023.65146 · doi:10.1016/S0377-0427(02)00716-1
[7] Cooke, K. L.: Functional differential equations: some models and perturbation problems, Differential equations and dynamical systems (1967) · Zbl 0189.40301
[8] Feckan, E.: On certain type of functional differential equations, Math. slovaca 43, 39-43 (1993) · Zbl 0789.34036
[9] Grimm, L. J.: Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. amer. Math. soc. 29, 467-473 (1971) · Zbl 0222.34061 · doi:10.2307/2038581
[10] Driver, R. D.: A two-body problem of classical electrodynamics: the one-dimensional case, Ann. physics 21, 122-142 (1963) · Zbl 0108.40705 · doi:10.1016/0003-4916(63)90227-6
[11] Oberg, R. J.: On the local existence of solutions of certain functional differential equations, Proc. amer. Math. soc. 20, 295-302 (1969) · Zbl 0182.12602 · doi:10.2307/2035640
[12] Jackiewicz, Z.: Existence and uniqueness of solutions of neutral delay-differential equations with state dependent delays, Funkcial. ekvac. 30, 9-17 (1987) · Zbl 0631.34006
[13] Si, Jian-Guo; Wang, Xin-Ping: Analytic solutions of a second-order iterative functional differential equation, Comput. math. Appl. 43, 81-90 (2002) · Zbl 1008.34059 · doi:10.1016/S0898-1221(01)00273-5
[14] Tian, Hong-Jiang; Fan, Li-Qiang; Zhang, Yuan-Ying; Xiang, Jia-Xiang: Spurious numerical solutions of delay differential equations, J. comput. Math. 24, No. 2, 181-192 (2006) · Zbl 1105.65079
[15] Leng, Xin; Liu, De-Gui; Song, Xiao-Qiu; Chen, Li-Rong: A class of two-step continuity Runge -- Kutta methods for solving singular delay differential equations and its stability analysis, J. comput. Math. 23, No. 6, 647-656 (2005) · Zbl 1082.65072
[16] Nussbaum, R. D.: Existence and uniqueness theorems for some functional differential equations of neutral type, J. differential equations 11, 607-623 (1972) · Zbl 0263.34070 · doi:10.1016/0022-0396(72)90070-8
[17] Kuang, Y.; Feldstein, A.: Monotonic and oscillatory solutions of a linear neutral delay equation with infinite lag, SIAM J. Math. anal. 21, 1633-1641 (1990) · Zbl 0719.34134 · doi:10.1137/0521089
[18] Iserles, A.; Liu, Y.: On neutral functional -- differential equation with proportional delays, J. math. Anal. appl. 207, 73-95 (1997) · Zbl 0873.34066 · doi:10.1006/jmaa.1997.5262
[19] Liu, Y.: Stability analysis of $\theta $-methods for neutral functional differential equations, Numer. math. 70, 473-485 (1995) · Zbl 0824.65081 · doi:10.1007/s002110050129
[20] Zhang, Cheng Jian; Sun, Geng: Nonlinear stability of Runge -- Kutta methods applied to infinite-delay-differential equations, Math. comput. Modelling 39, 495-503 (2004) · Zbl 1068.65106 · doi:10.1016/S0895-7177(04)90520-1
[21] Zhang, C. J.; Zhou, S. Z.: Nonlinear stability and D-convergence of Runge -- Kutta methods for delay differential equations, J. comput. Appl. math. 85, 225-237 (1997) · Zbl 0904.65082 · doi:10.1016/S0377-0427(97)00118-0
[22] Huang, C. M.; Li, S. F.; Fu, H. Y.; Chen, G. N.: Stability and error analysis of one-leg methods for nonlinear delay differential equations, J. comput. Appl. math. 103, 263-279 (1999) · Zbl 0948.65078 · doi:10.1016/S0377-0427(98)00262-3
[23] Zhang, C. J.; Sun, G.: The discrete dynamics of nonlinear infinite-delay-differential equations, Appl. math. Lett. 15, No. 5, 521-526 (2002) · Zbl 1001.65091 · doi:10.1016/S0893-9659(02)80001-5
[24] Minggen, Cui; Zhongxing, Deng: Solution to the definite solution problem of differential equations in space w2l[0,1], Adv. math. 17, 327-328 (1986)