Existence and uniqueness of solutions for third-order nonlinear boundary value problems. (English) Zbl 1160.34312

Consider the boundary value problem \[ y'''f(x,y,y',y''),\;0<x<1, \]
\[ k(y(0),y'(0))=0,\;g(y'(0),y''(0))=0,\tag{*} \]
\[ h(y(0),y'(0),y''(0);\;y(1),y'(1),y''(1))=0, \] where \(k,g\) and \(h\) are continuous. The authors provide sufficient conditions for the existence and uniqueness of a solution to (*).


34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI


[1] Agarwal, R. P., On boundary value problems for \(y''' = f(x, y, y^\prime, y'')\), Acad. Sinica, 12, 2, 153-157 (1984) · Zbl 0542.34015
[2] Agarwal, R. P., Boundary Value Problems for Higher Order Differential Equations (1986), World Scientific: World Scientific Singapore · Zbl 0598.65062
[3] Agarwal, R. P., Existence-uniqueness and iterative method for third-order boundary value problems, Comput. Appl. Math., 17, 271-289 (1987) · Zbl 0617.34008
[4] Baxley, J. V.; Brown, S. E., Existence and uniqueness for two-point boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 88, 219-234 (1981) · Zbl 0461.34011
[5] Cabada, A.; Grossinho, M. R.; Minhós, F., On the solvability of some discontinuous third order nonlinear differential equations with two point boundary conditions, J. Math. Anal. Appl., 285, 174-190 (2003) · Zbl 1048.34033
[6] Du, Z. J.; Ge, W. G.; Lin, X. J., Existence of solutions for a class of third-order nonlinear boundary value problems, J. Math. Anal. Appl., 294, 104-112 (2004) · Zbl 1053.34017
[7] Grossinho, M. R.; Minhós, F. M., Existence result for some third order separated boundary value problems, Nonlinear Anal., 47, 2047-2418 (2001) · Zbl 1042.34519
[8] Grossinho, M. R.; Minhós, F. M.; Santos, A. I., Existence result for a third-order ODE with nonlinear boundary conditions in presence of a sign-type Nagumo control, J. Math. Anal. Appl., 309, 271-283 (2005) · Zbl 1089.34017
[9] Grossinho, M. R.; Minhós, F. M.; Santos, A. I., Solvability of some third-order boundary value problems with asymmetric unbounded nonlinearities, Nonlinear Anal., 62, 1235-1250 (2005) · Zbl 1097.34016
[10] Hartman, P., Ordinary Differential Equations (1964), Wiley: Wiley New York · Zbl 0125.32102
[11] Henderson, J., Best interval lengths for third order Lipschitz equations, SIAM J. Math. Anal., 18, 293-305 (1987) · Zbl 0668.34017
[12] Japanese Mathematical Society, Encyclopedia of Mathematics (1985), Iwanami Bookstore: Iwanami Bookstore Tokyo · Zbl 0649.00023
[13] Rovderova, E., Third-order boundary value problem with nonlinear boundary conditions, Nonlinear Anal., 25, 473-485 (1995) · Zbl 0841.34022
[14] Sperb, René, Maximum Principles and Their Applications (1981), Academic Press: Academic Press New York · Zbl 0454.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.