[1] |
Murray, J. D.: Nonlinear differential equation models in biology. (1977) · Zbl 0379.92001 |

[2] |
Murray, J. D.: Mathematical biology. (1989) · Zbl 0682.92001 |

[3] |
Murray, J. D.: Mathematical biology II: Spatial models and biomedical applications. (2003) · Zbl 1006.92002 |

[4] |
Bluman, G. W.; Cole, J. D.: Similarity methods for differential equations. (1974) · Zbl 0292.35001 |

[5] |
Ovsiannikov, L. V.: The group analysis of differential equations. (1978) · Zbl 0485.58002 |

[6] |
Olver, P.: Applications of Lie groups to differential equations. (1986) · Zbl 0588.22001 |

[7] |
Fushchych, W. I.; Shtelen, W. M.; Serov, M. I.: Symmetry analysis and exact solutions of equations of nonlinear mathematical physics. (1993) · Zbl 0838.58043 |

[8] |
Bluman, G. W.; Cole, J. D.: The general similarity solution of the heat equation. J. math. Mech. 18, 1025-1042 (1969) · Zbl 0187.03502 |

[9] |
Serov, M. I.: Conditional invariance and exact solutions of non-linear heat equation. Ukrainian math. J. 42, 1370-1376 (1990) |

[10] |
Nucci, M. C.: Symmetries of linear, C-integrable, S-integrable and nonintegrable equations and dynamical systems. Nonlinear evolution equations and dynamical systems, 374-381 (1992) · Zbl 0941.37556 |

[11] |
Clarkson, P. A.; Mansfield, E. L.: Symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys. D 70, 250-288 (1993) · Zbl 0812.35017 |

[12] |
Cherniha, R. M.; Serov, M. I.: Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection term. European J. Appl. math. 9, 527-542 (1998) · Zbl 0922.35033 |

[13] |
Olver, P.: Direct reduction and differential constraints. Proc. R. Soc. lond. Ser. A 46, 509-523 (1994) · Zbl 0814.35003 |

[14] |
Galaktionov, V. A.: Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. roy. Soc. Edinburgh sect. A 125, 225-246 (1995) · Zbl 0824.35128 |

[15] |
Fokas, A. S.; Liu, Q. M.: Generalized conditional symmetries and exact solutions of nonintegrable equations. Teoret. mat. Fiz. 99, 263-277 (1994) · Zbl 0850.35097 |

[16] |
Liu, Q. M.; Fokas, A. S.: Exact interaction of solitary waves for certain nonintegrable equations. J. math. Phys. 37, 324-345 (1996) · Zbl 0861.35095 |

[17] |
Nucci, M. C.: Iterating the nonclassical symmetries method. Phys. D 78, 124-134 (1994) · Zbl 0815.35008 |

[18] |
Cherniha, R. M.: Symmetry and exact solutions of heat-and-mass transfer equations in tokamak plasma. Dopov. akad. Nauk ukr. 4, 17-21 (1995) |

[19] |
Cherniha, R.: A constructive method for construction of new exact solutions of nonlinear evolution equations. Rep. math. Phys. 38, No. 3, 301-312 (1996) · Zbl 0900.35067 |

[20] |
Cherniha, R.: New non-Lie ansätze and exact solutions of nonlinear reaction -- diffusion -- convection equations. J. phys. A 31, 8179-8198 (1998) · Zbl 0930.35033 |

[21] |
Burgers, J. M.: The nonlinear diffusion equation. (1974) · Zbl 0302.60048 |

[22] |
Newell, A. C.; Whitehead, J. A.: Finite bandwidth, finite amplitude convection. J. fluid mech. 38, 279-303 (1969) · Zbl 0187.25102 |

[23] |
Serov, M. I.; Cherniha, R. M.: Lie symmetries and exact solutions of nonlinear heat equations with convection term. Ukrainian math. J. 49, 1262-1270 (1997) · Zbl 0936.35042 |

[24] |
Ibragimov, N. H.; Meleshko, S. V.: Linearization of third-order ordinary differential equations by point and contact transformations. J. math. Anal. appl. 308, 266-289 (2005) · Zbl 1082.34003 |

[25] |
Arrigo, D. J.; Broadbridge, P.; Hill, J. M.: Nonclassical symmetry solutions and the methods of bluman -- Cole and clarkson -- Kruskal. J. math. Phys. 34, 4692-4703 (1993) · Zbl 0784.35097 |

[26] |
Cherniha, R.: New symmetries and exact solutions of nonlinear reaction -- diffusion -- convection equations. Proc. international workshop ”similarity methods”, 323-336 (1998) |

[27] |
Zhdanov, R. Z.; Lahno, V. I.: Conditional symmetry of a porous medium equation. Phys. D 122, 178-186 (1998) · Zbl 0952.76087 |

[28] |
Kamke, E.: Differentialgleichungen. lösungmethoden and lösungen. (1959) |

[29] |
Cherniha, R.; Serov, M.: Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansätze and solutions. J. math. Anal. appl. 282, 305-328 (2003) · Zbl 1073.35192 |

[30] |
Fitzhugh, R.: Impulse and physiological states in models of nerve membrane. Biophys. J. 1, 445-466 (1961) |

[31] |
Kolmogoroff, A.; Petrovsky, I.; Piskounoff, N.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow univ. Math. bull. 1, 1-25 (1937) |

[32] |
Kawahara, T.; Tanaka, M.: Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation. Phys. lett. A 97, 311-314 (1983) |

[33] |
Cherniha, R.; Dutka, V.: Diffusive Lotka -- Volterra system: Lie symmetries, exact and numerical solutions. Ukrainian math. J. 56, 1665-1675 (2004) |