zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exp-function method for solving the generalized-Zakharov equations. (English) Zbl 1160.35523
Summary: The Exp-function method is used to seek exact solutions of the generalized-Zakharov equations. The validity and reliability of the method is tested by its applications to a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include single and combined generalized solitonary solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35C05Solutions of PDE in closed form
35A25Other special methods (PDE)
WorldCat.org
Full Text: DOI
References:
[1] He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations. Chaos, solitons fract. 30, 700-708 (2006) · Zbl 1141.35448
[2] He, J. H.; Abdou, M. A.: New periodic solutions for nonlinear evolution equations using exp-function method. Chaos, solitons fract. 34, 1421-1429 (2007) · Zbl 1152.35441
[3] Abdou, M. A.; Soliman, A. A.; El-Basyony, S. T.: New application of exp-function method for improved Boussinesq equation. Phys. lett. A 369, 469-475 (2007) · Zbl 1209.81091
[4] Zhang, S.: Exp-function method for solving maccari’s system. Phys. lett. A 371, 65-71 (2007) · Zbl 1209.65103
[5] Ebaid, A.: Exact solitary wave solutions for some nonlinear evolution equations via exp-function method. Phys. lett. A 365, 213-219 (2007) · Zbl 1203.35213
[6] Zhang, S.: Application of exp-function method to a KdV equation with variable coefficients. Phys. lett. A 365, 448-453 (2007) · Zbl 1203.35255
[7] Zhang, S.: Application of exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer -- Kaup -- kupershmidt equations. Phys. lett. A 372, 1873-1880 (2008) · Zbl 1220.37071
[8] Yun, Beong In: A non-iterative method for solving non-linear equations. Appl. math. Comput. 198, 691-699 (2008) · Zbl 1138.65035
[9] Lin, C.; Li, K. M.; Li, Y. Z.: Analytical study of the nonlinear dust-acoustic waves in an unmagnetized dusty plasma. Commun. nonlinear sci. Numer. simul. 12, 1190-1194 (2007) · Zbl 05161260
[10] Lin, C.; Li, Y. Z.; Li, K. M.: The formally variable separation approach for the dust-acoustic solitary waves with dust charge variation. Commun. nonlinear sci. Numer. simul. 12, 920-927 (2007) · Zbl 1111.76341
[11] El-Wakil, S. A.; Abdou, M. A.; Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. lett. A 353, 40-47 (2007) · Zbl 1137.35059
[12] Wang, M. L.; Li, X. Z.: Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. lett. A 343, 48-54 (2005) · Zbl 1181.35255