×

Exact solutions for the general fifth KdV equation by the exp function method. (English) Zbl 1160.35525

Summary: We solve the general fifth KdV equation with the aid of a computer by using the exp function method. Some new solutions for the Ito equation are given.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
35C05 Solutions to PDEs in closed form
35-04 Software, source code, etc. for problems pertaining to partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[2] Chun, C., Phys. Lett. A, 372, 2760-2766 (2008) · Zbl 1220.35148
[3] Lax, P. D., Commun. Pure Appl. Math., 21, 467-490 (1968) · Zbl 0162.41103
[4] Sawada, K.; Kotera, T., Prog. Theor. Phys., 51, 1355-1367 (1974) · Zbl 1125.35400
[5] Ito, M., J. Phys. Soc. Japan, 49, 771-778 (1980) · Zbl 1334.35282
[6] Ito, M., Comp. Phys. Commun., 42, 351-357 (1986)
[7] Fordy, A. P.; Gibbons, J., Phys. Lett., 75A, 325 (1980)
[8] Satsuma, J.; Kaup, D. J., J. Phys. Soc. Jpn., 43, 692-697 (1977)
[9] Kaup, D., Stud. Appl. Math., 62, 189-216 (1980) · Zbl 0431.35073
[10] Kupershmidt, B. A., Phys. Lett., 102 A, 213-215 (1984)
[11] Salas, A., Appl. Math. Comput., 196, 2, 812-817 (2008) · Zbl 1132.35461
[12] He, J. H.; Wu, X. H., Chaos Soliton. Fract., 30, 700-708 (2006) · Zbl 1141.35448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.