Sirendaoreji A new auxiliary equation and exact travelling wave solutions of nonlinear equations. (English) Zbl 1160.35527 Phys. Lett., A 356, No. 2, 124-130 (2006). Summary: A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations. Cited in 1 ReviewCited in 56 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:auxiliary equation; travelling wave solution; nonlinear equation PDF BibTeX XML Cite \textit{Sirendaoreji}, Phys. Lett., A 356, No. 2, 124--130 (2006; Zbl 1160.35527) Full Text: DOI References: [1] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) [2] Fan, E. G., Phys. Lett. A, 277, 212 (2000) [3] Elwakil, S. A.; El-Labany, S. K.; Zaharan, M. A.; Sabry, R., Phys. Lett. A, 299, 179 (2002) [4] Parkes, E. J.; Duffy, B. R.; Abbott, P. C., Phys. Lett. A, 295, 280 (2002) [5] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 290, 72 (2001) [6] Chen, Y.; Wang, Q.; Li, B., Chaos Solitons Fractals, 26, 231 (2005) [7] Wang, M. L., Phys. Lett. A, 199, 169 (1995) [8] Wang, M. L.; Zhou, Y. B.; Li, Z. B., Phys. Lett. A, 216, 67 (1996) [9] Yan, C. T., Phys. Lett. A, 224, 77 (1996) [10] Sirendaoreji; Sun, J., Phys. Lett. A, 309, 387 (2003) [11] Sirendaoreji, Chaos Solitons Fractals, 19, 147 (2004) [12] Parkes, E. J.; Duffy, B. R.; Abbott, P. C., Phys. Lett. A, 295, 280 (2002) [13] Dey, B., J. Phys. A: Math. Gen., 19, L9 (1986) [14] Konno, K.; Ichikawa, Y. H., J. Phys. Soc. Jpn., 37, 1631 (1974) [15] Wadati, M., J. Phys. Soc. Jpn., 38, 673 (1975) [16] Wadati, M., J. Phys. Soc. Jpn., 38, 681 (1975) [17] Naraynamurti, V.; Varma, C. M., Phys. Rev. Lett., 25, 1105 (1970) [18] Miura, R. M., J. Math. Phys., 9, 1202 (1968) [19] Coeffy, M. W., SIAM J. Appl. Math., 50, 1580 (1990) [20] Mohamad, M. N.B., Math. Methods Appl. Sci., 15, 73 (1992) [21] Lou, S. Y., Math. Methods Appl. Sci., 17, 339 (1994) [22] Scott, A. C.; Chu, F. Y.F.; McLaughlin, D. W., Proc. IEEE, 61, 1443 (1973) [23] Gibbon, J. D., Philos. Trans. R. Soc. London A, 315, 335 (1985) · Zbl 0579.35076 [24] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., Phys. Rev. Lett., 30, 1262 (1973) [25] Sirendaoreji; Sun, J., Phys. Lett. A, 298, 133 (2002) [26] Whitham, G. B., Proc. R. Soc. A, 299, 6 (1967) [27] Broer, L. J., Appl. Sci. Res., 31, 377 (1975) [28] Kaup, D. J., Prog. Theor. Phys., 54, 396 (1975) [29] Kupershmidt, B. A., Commun. Math. Phys., 99, 51 (1985) [30] Fan, E. G.; Zhang, H. Q., Appl. Math. Mech., 19, 667 (1998), (in Chinese) [31] Xie, F. D.; Yan, Z. Y.; Zhang, H. Q., Phys. Lett. A, 285, 76 (2001) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.