×

zbMATH — the first resource for mathematics

A direct proof of the tail variational principle and its extension to maps. (English) Zbl 1160.37320
Summary: T. Downarowicz [Entropy structure, J. Anal. Math. 96, 57–116 (2005; Zbl 1151.37020)] stated a variational principle for the tail entropy for invertible continuous dynamical systems of a compact metric space. We give here an elementary proof of this variational principle. Furthermore, we extend the result to the non-invertible case.

MSC:
37B40 Topological entropy
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ledrappier, A Variational Principle for the Topological Conditional Entropy pp 78– (1979)
[2] DOI: 10.1112/jlms/s2-16.3.568 · Zbl 0388.28020
[3] DOI: 10.1112/blms/3.2.176 · Zbl 0219.54037
[4] DOI: 10.1007/BF02684777 · Zbl 0445.58015
[5] DOI: 10.4064/fm172-3-2 · Zbl 1115.37308
[6] DOI: 10.1007/BF02766215 · Zbl 0641.54036
[7] Downarowicz, J. Anal. 96 pp 57– (2005)
[8] Walters, An Introduction to Ergodic Theory (1982) · Zbl 0475.28009
[9] DOI: 10.1007/BF02773637 · Zbl 0889.28009
[10] DOI: 10.2307/1971492 · Zbl 0676.58039
[11] Misiurewicz, Studia Math. 55 pp 175– (1976)
[12] DOI: 10.1007/s00222-003-0335-2 · Zbl 1216.37004
[13] Misiurewicz, Asterisque 40 pp 147– (1976)
[14] Misiurewicz, Bull. Acad. Pol. Sci. 10 pp 903– (1973)
[15] DOI: 10.1007/BF02698858 · Zbl 0978.54027
[16] DOI: 10.2307/2036610 · Zbl 0186.09804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.