×

Robust synchronization of chaotic systems via adaptive sliding mode control. (English) Zbl 1160.37352

Summary: This Letter investigates the synchronization problem for a general class of chaotic systems. Using the sliding mode control technique, an adaptive control law is established to guarantee synchronization of the master and slave systems even when unknown parameters and external disturbances are present. In contrast to the previous works, the structure of slave system is simple and need not be identical to the master system. Furthermore, a novel proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. An illustrative example of Chua’s circuit is given to demonstrate the effectiveness of the proposed synchronization scheme.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
94C05 Analytic circuit theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990)
[2] Yang, T.; Chua, L. O., IEEE Trans. Circuits Systems I, 43, 817 (1996)
[3] Liao, T. L.; Tsai, S. H., Chaos Solitons Fractals, 11, 1387 (2000)
[4] Feki, M., Chaos Solitons Fractals, 18, 141 (2003)
[5] Chen, M.; Zhou, D.; Shang, Y., Chaos Solitons Fractals, 24, 1025 (2005)
[6] Puebla, H.; Alvarez-Ramirez, J., Phys. Lett. A, 283, 96 (2001)
[7] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., Phys. Rep., 366, 1 (2002)
[8] Wei, G. W., Phys. Rev. Lett., 86, 3542 (2001)
[9] Lian, K. Y.; Liu, P.; Chiang, T. S.; Chiu, C. S., IEEE Trans. Circuits Systems I, 49, 17 (2002)
[10] Wang, C.; Ge, S. S., Int. J. Bifur. Chaos, 11, 1743 (2001)
[11] Yassen, M. T., Appl. Math. Comput., 135, 113 (2003)
[12] Yu, X.; Song, Y., Int. J. Bifur. Chaos, 11, 1737 (2001)
[13] Jang, M. J.; Chen, C. C.; Chen, C. O., Int. J. Bifur. Chaos, 12, 1437 (2002)
[14] Piccardi, C.; Ghezzi, L. L., Int. J. Bifur. Chaos, 7, 437 (1997)
[15] Guo, S. M.; Shieh, L. S.; Chen, G.; Lin, C. F., IEEE Trans. Circuits Systems I, 47, 1557 (2000)
[16] Wu, T.; Chen, M. S., Physica D, 164, 53 (2002)
[17] Zhang, J.; Li, C.; Zhang, H.; Yu, J., Chaos Solitons Fractals, 21, 1183 (2004)
[18] Zhang, H.; ma, X. K., Chaos Solitons Fractals, 39, 39 (2004)
[20] Rössler, O. E., Phys. Lett., 71, 155 (1979)
[21] Matsumoto, T.; Chua, L. O.; Kobayashi, K., IEEE Trans. Circuits Systems, I: Fund. Theory Appl., 33, 1143 (1986)
[22] Tsai, H. H.; Fuh, C. C.; Chang, C. N., Chaos Solitons Fractal, 14, 627 (2002)
[23] Yang, S. K.; Chen, C. L.; Yau, H. T., Chaos Solitons Fractal, 13, 767 (2002)
[24] Lü, J.; Lu, J., Chaos Solitons Fractal, 17, 127 (2003)
[25] Yassen, M. T., Chaos Solitons Fractal, 15, 271 (2003) · Zbl 1038.37029
[27] Utkin, V. I., Sliding Mode and Their Applications in Variable Structure Systems (1978), Mir: Mir Moscow · Zbl 0398.93003
[28] Itkis, U., Control System of Variable Structure (1976), Wiley: Wiley New York
[29] Khalil, H. K., Nonlinear Systems (1992), Macmillan: Macmillan New York · Zbl 0626.34052
[30] Slotine, J. J.E.; Li, W., Applied Nonlinear Control (1991), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[31] Chua, L. O.; Lin, G. N., IEEE Trans. Circuits Systems, 37, 885 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.