Chen, Yaoping; Chen, Fengde; Li, Zhong Dynamic behaviors of a general discrete nonautonomous system of plankton allelopathy with delays. (English) Zbl 1160.37432 Discrete Dyn. Nat. Soc. 2008, Article ID 310425, 22 p. (2008). Summary: We study the dynamic behaviors of a general discrete nonautonomous system of plankton allelopathy with delays. We first show that under some suitable assumption, the system is permanent. Next, by constructing a suitable Lyapunov functional, we obtain a set of sufficient conditions which guarantee the global attractivity of the two species. After that, by constructing an extinction-type Lyapunov functional, we show that under some suitable assumptions, one species will be driven to extinction. Finally, two examples together with their numerical simulations show the feasibility of the main results. Cited in 2 Documents MSC: 37N25 Dynamical systems in biology 92C80 Plant biology PDF BibTeX XML Cite \textit{Y. Chen} et al., Discrete Dyn. Nat. Soc. 2008, Article ID 310425, 22 p. (2008; Zbl 1160.37432) Full Text: DOI EuDML OpenURL References: [1] DOI: 10.1016/0304-3800(94)00134-0 [2] (1974) [3] DOI: 10.1016/S0025-5564(98)00005-4 · Zbl 0946.92031 [4] DOI: 10.1007/s002850050162 · Zbl 0929.92036 [5] DOI: 10.1006/tpbi.1997.1309 · Zbl 0882.92025 [6] DOI: 10.1016/j.amc.2005.01.066 · Zbl 1080.92059 [7] DOI: 10.1016/j.amc.2006.03.026 · Zbl 1113.92061 [8] DOI: 10.1016/j.cam.2006.08.020 · Zbl 1125.34066 [9] DOI: 10.1016/j.amc.2005.12.024 · Zbl 1099.92069 [10] DOI: 10.1016/j.camwa.2006.12.015 · Zbl 1127.92038 [11] Annals of Differential Equations 9 (1) pp 11– (1993) [12] DOI: 10.1016/S0898-1221(02)00163-3 · Zbl 1094.34542 [13] Acta Mathematica Scientia. Series A 23 (1) pp 8– (2003) [14] DOI: 10.1016/j.amc.2007.08.075 · Zbl 1133.92029 [15] DOI: 10.1016/j.ecolmodel.2007.05.024 [16] DOI: 10.1016/j.amc.2006.07.113 · Zbl 1111.92065 [17] DOI: 10.1016/j.ecolmodel.2006.12.020 [18] DOI: 10.1016/j.chaos.2006.01.017 · Zbl 1163.34387 [19] DOI: 10.1016/j.jmaa.2008.04.014 · Zbl 1152.34061 [20] DOI: 10.1016/j.vaccine.2006.05.018 [21] DOI: 10.1016/j.nonrwa.2007.05.004 · Zbl 1154.34394 [22] DOI: 10.1155/DDNS/2006/95296 [23] DOI: 10.1016/j.na.2008.01.031 · Zbl 1166.34042 [24] DOI: 10.1016/j.nonrwa.2008.11.017 · Zbl 1190.34084 [25] DOI: 10.1016/j.aml.2004.07.002 · Zbl 1067.39009 [26] Dynamics of Continuous, Discrete & Impulsive Systems. Series B 15 (2) pp 165– (2008) [27] DOI: 10.1016/j.mcm.2007.02.023 · Zbl 1148.39017 [28] DOI: 10.1142/S0219525906000628 · Zbl 1107.92059 [29] DOI: 10.1016/S0022-247X(02)00611-X · Zbl 1019.39004 [30] DOI: 10.1016/S0895-7177(02)00062-6 · Zbl 1050.39022 [31] DOI: 10.1016/j.cam.2005.09.023 · Zbl 1098.92066 [32] DOI: 10.1016/j.chaos.2005.12.004 · Zbl 1137.34017 [33] DOI: 10.1007/s002850050171 · Zbl 0945.92022 [34] DOI: 10.1016/j.jmaa.2003.12.033 · Zbl 1059.39007 [35] DOI: 10.1016/j.jmaa.2006.07.070 · Zbl 1124.39011 [36] DOI: 10.1006/jmaa.2000.7303 · Zbl 0976.92031 [37] DOI: 10.2307/3545323 [38] DOI: 10.2307/1938740 [39] DOI: 10.1080/10236190108808267 · Zbl 0987.39005 [40] DOI: 10.1016/S0362-546X(98)00112-6 · Zbl 0919.92030 [41] DOI: 10.1006/jmaa.2001.7666 · Zbl 1006.92025 [42] DOI: 10.3934/dcdsb.2004.4.823 · Zbl 1116.92072 [43] DOI: 10.1016/j.jmaa.2005.04.036 · Zbl 1107.39017 [44] DOI: 10.1016/S0898-1221(99)00315-6 · Zbl 0970.92019 [45] DOI: 10.1155/ADE/2006/90479 · Zbl 1134.39008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.