×

Delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. (English) Zbl 1160.39304

Summary: The authors consider the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.

MSC:

39A11 Stability of difference equations (MSC2000)
39A12 Discrete version of topics in analysis
92B20 Neural networks for/in biological studies, artificial life and related topics
15A45 Miscellaneous inequalities involving matrices
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Applied Optics 26 (23) pp 4947– (1987) · Zbl 0643.35114
[2] DOI: 10.1109/21.87054
[3] DOI: 10.1109/72.991431
[4] DOI: 10.1016/S0096-3003(01)00315-0 · Zbl 1030.34073
[5] DOI: 10.1016/j.amc.2003.11.007 · Zbl 1073.34080
[6] DOI: 10.1016/j.chaos.2004.09.037 · Zbl 1071.82538
[7] DOI: 10.1109/TNN.2005.844910
[8] DOI: 10.1016/j.amc.2006.04.012 · Zbl 1113.34051
[9] DOI: 10.1016/j.chaos.2005.08.018 · Zbl 1121.92006
[10] DOI: 10.1016/j.neucom.2006.02.020 · Zbl 05184828
[11] DOI: 10.1016/j.physleta.2005.09.067
[12] DOI: 10.1016/j.na.2006.02.009 · Zbl 1120.34055
[13] DOI: 10.1016/j.neunet.2006.02.006 · Zbl 1178.68417
[14] DOI: 10.1016/j.chaos.2007.09.098 · Zbl 1198.93165
[15] DOI: 10.1016/j.chaos.2007.05.003 · Zbl 1197.34140
[16] DOI: 10.1016/j.nonrwa.2008.01.023 · Zbl 1160.92003
[17] DOI: 10.1016/j.physleta.2006.10.073
[18] DOI: 10.1109/TCSI.2002.801284 · Zbl 1368.39014
[19] DOI: 10.1016/S0096-3003(01)00299-5 · Zbl 1030.34072
[20] DOI: 10.1016/j.neucom.2004.08.004 · Zbl 02223962
[21] DOI: 10.1109/TCSI.2006.874179 · Zbl 1374.39022
[22] DOI: 10.1016/j.physleta.2006.05.014 · Zbl 1142.93393
[23] DOI: 10.1016/j.physleta.2007.03.088
[24] DOI: 10.1016/j.neucom.2008.01.006 · Zbl 05718828
[25] DOI: 10.1016/j.chaos.2004.03.004 · Zbl 1062.68102
[26] DOI: 10.1016/j.physleta.2004.12.026 · Zbl 1123.68346
[27] DOI: 10.1016/j.physleta.2007.03.037 · Zbl 1209.93112
[28] DOI: 10.1016/j.apm.2008.01.019 · Zbl 1168.39300
[29] Lecture Notes in Control and Information Sciences 303 pp xvi+258– (2004)
[30] DOI: 10.1016/j.chaos.2005.10.061 · Zbl 1152.34058
[31] DOI: 10.1016/j.nonrwa.2005.10.004 · Zbl 1122.34065
[32] DOI: 10.1109/TNN.2006.872355
[33] DOI: 10.1016/j.physleta.2005.07.025 · Zbl 1345.92017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.