×

The study of triple integral equations with generalized Legendre functions. (English) Zbl 1160.45301

Summary: A method is developed for solutions of two sets of triple integral equations involving associated Legendre functions of imaginary arguments. The solution of each set of triple integral equations involving associated Legendre functions is reduced to a Fredholm integral equation of the second kind which can be solved numerically.

MSC:

45F10 Dual, triple, etc., integral and series equations
45B05 Fredholm integral equations
65R20 Numerical methods for integral equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. A. Babloian, “Solutions of certain dual integral equations,” Prikladnaya Matematika i Mekhanika, vol. 28, no. 6, pp. 1015-1023, 1964, English translation in Journal of Applied Mathematics and Mechanics, vol. 28, no. 6, pp. 1227-1236, 1964. · Zbl 0149.08003 · doi:10.1016/0021-8928(64)90034-6
[2] R. S. Pathak, “On a class of dual integral equations,” Koninklijke Nederlandse Akademie van Wetenschappen, vol. 40, no. 4, pp. 491-501, 1978. · Zbl 0403.45007
[3] B. N. Mandal, “A note on dual integral equations involving associated Legendre function,” International Journal of Mathematics and Mathematical Sciences, vol. 15, no. 3, pp. 601-604, 1992. · Zbl 0755.45004 · doi:10.1155/S0161171292000760
[4] B. M. Singh, J. Rokne, and R. S. Dhaliwal, “The study of dual integral equations with generalized Legendre functions,” Journal of Mathematical Analysis and Applications, vol. 304, no. 2, pp. 725-733, 2005. · Zbl 1068.45003 · doi:10.1016/j.jmaa.2004.09.051
[5] K. N. Srivastava, “On some triple integral equations involving Legendre functions of imaginary argument,” Journal of Maulana Azad College of Technology, vol. 1, pp. 54-67, 1968. · Zbl 0291.45010
[6] J. C. Cooke, “Triple integral equations,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 16, no. 2, pp. 193-203, 1963. · Zbl 0112.33304 · doi:10.1093/qjmam/16.2.193
[7] J. C. Cooke, “Some further triple integral equation solutions,” Proceedings of the Edinburgh Mathematical Society, vol. 13, pp. 303-316, 1963. · Zbl 0117.32301 · doi:10.1017/S0013091500025608
[8] J. C. Cooke, “The solution of triple integral equations in operational form,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 18, no. 1, pp. 57-72, 1965. · Zbl 0195.40103 · doi:10.1093/qjmam/18.1.57
[9] J. C. Cooke, “The solution of triple and quadruple integral equations and Fourier-Bessel series,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 25, no. 2, pp. 247-263, 1972. · Zbl 0241.45017 · doi:10.1093/qjmam/25.2.247
[10] C. J. Tranter, “Some triple integral equations,” Proceedings of the Glasgow Mathematical Association, vol. 4, pp. 200-203, 1960. · Zbl 0103.07903 · doi:10.1017/S204061850003416X
[11] E. R. Love and D. L. Clements, “A transformation of Cooke/s treatment of some triple integral equations,” Journal of the Australian Mathematical Society. Series B, vol. 19, no. 3, pp. 259-288, 1976. · Zbl 0361.45004 · doi:10.1017/S0334270000001156
[12] N. Srivastava, “On triple integral equations involving Bessel function as kernel,” Journal of Maulana Azad College of Technology, vol. 21, pp. 39-50, 1988. · Zbl 0673.45003
[13] I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam, The Netherlands, 1966. · Zbl 0139.28801
[14] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms. Vol. II, McGraw Hill, New York, NY, USA, 1954. · Zbl 0058.34103
[15] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms. Vol. I, McGraw Hill, New York, NY, USA, 1954. · Zbl 0055.36401
[16] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der Mathematischen Wissenschaften. 52, Springer, New York, NY, USA, 1966. · Zbl 0143.08502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.