×

zbMATH — the first resource for mathematics

On the index of nonlocal elliptic operators. (English. Russian original) Zbl 1160.58010
Dokl. Math. 77, No. 3, 441-445 (2008); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 420, No. 5, 592-597 (2008).
The authors study general nonlocal elliptic (pseudodifferential) operators induced by isometries of the base manifold. Analytic invariants, Bott periodicity and others related with the index of considered nonlocal elliptic operators are studied.

MSC:
58J20 Index theory and related fixed-point theorems on manifolds
35S05 Pseudodifferential operators as generalizations of partial differential operators
46L05 General theory of \(C^*\)-algebras
47G30 Pseudodifferential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Connes, Noncommutative Geometry (Academic, San Diego, 1994).
[2] A. Connes and G. Landi, Commun. Math. Phys. 221(1), 141–159 (2001). · Zbl 0997.81045 · doi:10.1007/PL00005571
[3] A. Antonevich and A. Lebedev, Functional-Differential Equations (Longman, Harlow, 1994, 1998), Vols. 1, 2. · Zbl 0799.34001
[4] L. B. Schweitzer, Int. J. Math. 4(2), 289–317 (1993). · Zbl 0804.46081 · doi:10.1142/S0129167X93000157
[5] Yu. Egorov and D.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications (Birkhäuser, Boston, 1997). · Zbl 0877.35141
[6] G. G. Kasparov, Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. Noveishie Rezul’taty 27, 3–41 (1985).
[7] A. S. Mishchenko and A. T. Fomenko, Izv. Akad. Nauk SSSR, Ser. Mat. 43(4), 831–859 (1979).
[8] M. F. Atiyah and G. B. Segal, Ann. Math. 87, 531–545 (1968). · Zbl 0164.24201 · doi:10.2307/1970716
[9] M. F. Atiyah and I. M. Singer, Ann. Math. 87, 546–604 (1968). · Zbl 0164.24301 · doi:10.2307/1970717
[10] P. Baum and A. Connes, in A Féte of Topology (Academic, Boston, 1988), pp. 163–232.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.