zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed points and stability of neutral stochastic delay differential equations. (English) Zbl 1160.60020
The goal of the paper is to establish a necessary and sufficient condition for the mean square asymptotic stability of a linear scalar stochastic differential equation with time-depending delay using a fixed point theorem approach. Reviewer’s remarks: However, there are inconsistencies in the paper which makes it hard to understand. 1) The reviewer guesses that in (2.1), (2.2) $m(0)$ is meant to be negative, otherwise the space $ C([m(0) , 0] \, , \, {\bbfR})$ is not well defined. On the other hand, if, for instance, $\tau(t) = \delta(t) = \frac{1}{2}t$ as in example 3.1, then $\tau(t) = \delta(t) \geq 0$ and $ t -\tau(t) = t - \delta(t) = \frac{1}{2}t \to \infty $ (as $ t \to \infty $ ) as required; but $\inf \{ s - \tau(s); s \geq 0 \} = \inf \{ s - \delta(s); s \geq 0 \} = 0 $, therefore $m(0) = 0$. 2) If the Banach space $S$ consists of the processes $ \psi: [m(0) ,\infty) \times \Omega \to {\bbfR}$ with $| \psi \|_{[0,t]}= \{ {\bold E} ( \sup_{s \in [0,t]} |\psi(s, \omega ) |^2 ) \}^{1/2} \to 0 $ as $t \to \infty$, then $S = \{0\}$. Usually mean asymptotic square stability means $| \psi | = {\bold E} \{ \sup_{t\geq 0} | \psi(t; \phi) |^2 \} < \infty$ and $\lim_{\vert \phi \vert \to 0} {\bold E} \{ \sup_{t\geq 0} \vert\psi(t; \phi) \vert^{2} \} = 0$ (mean square stability) together with $$ \lim_{T \to \infty} {\bold E} \{ \sup_{t\geq T} |\psi(t; \phi) |^{2} \} = 0.$$

MSC:
60H10Stochastic ordinary differential equations
34K20Stability theory of functional-differential equations
34K50Stochastic functional-differential equations
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47N20Applications of operator theory to differential and integral equations
WorldCat.org
Full Text: DOI
References:
[1] Brayton, R. K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type. Quart. appl. Math. 24, 215-224 (1966) · Zbl 0143.30701
[2] Burton, T. A.: Lyapunov functionals, fixed points, and stability by Krasnoselskii’s theorem. Nonlinear stud. 9, 181-190 (2001)
[3] Burton, T. A.: Perron-type stability theorems for neutral equations. Nonlinear anal. 55, 285-297 (2003) · Zbl 1044.34028
[4] Burton, T. A.: Stability by fixed point theory or Lyapunov theory: A comparison. Fixed point theory 4, 15-32 (2003) · Zbl 1061.47065
[5] Burton, T. A.: Fixed points and stability of a nonconvolution equation. Proc. amer. Math. soc. 132, 3679-3687 (2004) · Zbl 1050.34110
[6] Burton, T. A.: Stability and fixed points: addition of terms. Dynam. systems appl. 13, 459-478 (2004) · Zbl 1133.34364
[7] Burton, T. A.: Stability by fixed point methods for highly nonlinear delay equations. Fixed point theory 5, 3-20 (2004) · Zbl 1079.34057
[8] Burton, T. A.: Fixed points, stability, and exact linearization. Nonlinear anal. 61, 857-870 (2005) · Zbl 1067.34077
[9] Burton, T. A.: Fixed points, stability, and harmless perturbations. Fixed point theory appl. 1, 35-46 (2005) · Zbl 1121.34077
[10] Burton, T. A.: Fixed points, Volterra equations, and Becker’s resolvent. Acta math. Hungar. 108, 261-281 (2005) · Zbl 1091.34040
[11] Burton, T. A.; Furumochi, Tetsuo: A note on stability by Schauder’s theorem. Funkcial. ekvac. 44, 73-82 (2001) · Zbl 1158.34329
[12] Burton, T. A.; Furumochi, Tetsuo: Fixed points and problems in stability theory. Dynam. systems appl. 10, 89-116 (2001) · Zbl 1021.34042
[13] Burton, T. A.; Furumochi, Tetsuo: Asymptotic behavior of solutions of functional differential equations by fixed point theorems. Dynam. systems appl. 11, 499-521 (2002) · Zbl 1044.34033
[14] Burton, T. A.; Furumochi, Tetsuo: Krasnoselskii’s fixed point theorem and stability. Nonlinear anal. 49, 445-454 (2002) · Zbl 1015.34046
[15] Burton, T. A.; Furumochi, Tetsuo: Asymptotic behavior of nonlinear functional differential equations by Schauder’s theorem. Nonlinear stud. 12, 73-84 (2005) · Zbl 1068.34071
[16] Burton, T. A.; Zhang, B.: Fixed points and stability of an integral equation: nonuniqueness. Appl. math. Lett. 17, 839-846 (2004) · Zbl 1066.45002
[17] Furumochi, Tetsuo: Asymptotic behavior of solutions of some functional differential equations by Schauder’s theorem. Electron. J. Qual. theory differ. Equ. 10, 1-11 (2004) · Zbl 1072.34076
[18] Furumochi, Tetsuo: Stabilities in fdes by Schauder’s theorem. Nonlinear anal. 63, e217-e224 (2005) · Zbl 1159.39301
[19] Kolmanovskii, V. B.; Shaikhet, L. E.: Matrix Riccati equations and stability of stochastic linear systems with non-increasing delay. Funct. differ. Equ. 4, 279-293 (1997) · Zbl 1148.93346
[20] Kolmanovskii, V. B.; Myshkis, A. D.: Applied theory of functional differential equations. (1992) · Zbl 0917.34001
[21] Kolmanovskii, V. B.; Nosov, V. R.: Stability of functional differential equations. (1986) · Zbl 0593.34070
[22] Kuang, Y.: Delay differential equations with applications in population dynamics. (1993) · Zbl 0777.34002
[23] Liu, K.; Xia, X.: On the exponential stability in mean square of neutral stochastic functional differential equations. Systems control lett. 37, 207-215 (1999) · Zbl 0948.93060
[24] Mao, X. R.: Stochastic differential equations and applications. (1997) · Zbl 0892.60057
[25] Raffoul, Y. N.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. comput. Modelling 40, 691-700 (2004) · Zbl 1083.34536
[26] Zhang, B.: Fixed points and stability in differential equations with variable delays. Nonlinear anal. 63, e233-e242 (2005)